920 likes | 1.22k Views
孤立波:从连续到离散. 上 海大学 张大军 ( 静宜大学 2013 年 11 月 ). 孤立波的特征:波 + 粒子. Unlike normal waves they will never merge—so a small wave is overtaken by a large one, rather than the two combining. KdV 2-soliton. 伟大的水波.
E N D
孤立波:从连续到离散 上 海大学 张大军 (静宜大学 2013年11月)
孤立波的特征:波+粒子 Unlike normal waves they will never merge—so a small wave is overtaken by a large one, rather than the two combining.
伟大的水波 • The Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995. For the technically minded, the aqueduct is 89.3 m long, 4.13m wide, and 1.52m deep.
伟大的水波 • The Scott Russell Aqueduct on the Union Canal near Heriot-Watt University, 12 July 1995. For the technically minded, the aqueduct is 89.3 m long, 4.13m wide, and 1.52m deep.
John Scott Russell (9 May 1808-8 June 1882) Education: Edinburgh, St. Andrews, Glasgow • August, 1834 • z
Russell’s observation • A large solitary elevation, a rounded, smooth and well defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed … Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon. (Russell, 1838)
研 究 结 论 • The waves are stable, and can travel over very large distances (normal waves would tend to either flatten out, or steepen and topple over) • The speed depends on the size of the wave, and its width on the depth of water. • Unlike normal waves they will never merge—so a small wave is overtaken by a large one, rather than the two combining. • If a wave is too big for the depth of water, it splits into two, one big and one small.
The Great Wave Translation • Solitary waves --- J.S. Russell • Airy: “even in an uniform-canal of rectangular section, are no longer propagated without change of type.” Solitary waves of permanent form do not exist! • Russell: “completely the opposite of that to which we should be led on the same grounds.”
非线性模型:波的坍塌 • 非线性方程: • 行波解: • 速度: 速度快 速度慢
非线性模型:波的坍塌 t = 0 t > 0
Scott Russell 的其他 • 组建 the Royal Commission for the Exhibition of 1851 • 成立J Scott Russell & Co. shipbuilding company The Great Eastern
Scott Russell 的其他 • 组建 the Royal Commission for the Exhibition of 1851 • 成立J Scott Russell & Co. shipbuilding company • 评价:未提Solitary waves • a better scientist than a businessman
1834 ~ 1895 J Scott Russell (1808-1882) Diederik Korteweg (1848-1941)
Korteweg-de Vries(KdV)方程 • Korteweg(1848-1941) Amsterdam大学教授 • Gustav de Vries : K的学生 流体力学基本模型 KdV方程: 行波解:
Russell’s Grate Wave---Solitary Wave Travelling wave
1895 ~ 1960s Diederik Korteweg (1848-1941) Martin D. Kruskal (1925-2006)
FPU问题 • Fermi-Pasta-Ulam problem (Los Alamos, 1950’s) • Study the thermalization process of a solid • Computer use (Maniac)
Birth of Solitons (孤立子) • Martin David Kruskal • 1925-2006 • 导师:Courant • 院士 • Father of “Soliton” • FPU问题 • Toda Lattice • KdV方程的数值解 Solitons(partical property, 1965)
Inverse Scattering Transform (反散射变换)
Exact solutions to the KdV 1-soliton solution
Exact solutions to the KdV 2-soliton solution
sine-Gordon方程 • 机械孤子: Kink Anti-Kink
http://www.math.h.kyoto-u.ac.jp/~takasaki/soliton-lab/gallery/solitons/sg-e.htmlhttp://www.math.h.kyoto-u.ac.jp/~takasaki/soliton-lab/gallery/solitons/sg-e.html Breather
方法举例 • 反散射变换/Riemann-Hilbert方法,基于Lax对 • Hirota方法 /双线性方法 • Royal Hirota 日本学者
Hirota双线性方法 变换: 双线性方程: KdV方程: 级数解: 1孤子解:
Hirota双线性方法 • 2孤子解:
Hirota双线性方法 • n孤子解:
Hirota双线性方法 • 反散射变换 • Hirota方法 • Sato理论 • 2小时/天 X 2周 • 2小时/天 X 1天 • 2小时/天 X 2月
离 散 • 如何看待离散,为什么要离散? • 可积离散 • 多维相容性 • 从离散到连续:连续极限
u (x, t) u (n, m) t = t0 + m q (x0, t0) x = x0 + n p 如何看待离散? (×) 实数x 整数n: 映射 f(x) f(n)
例:非线性叠加公式与离散方程 递推关系=离散系统