1 / 18

CADLIVE

CADLIVE. GRAPHICAL NOTATION. http://www.cadlive.jp. Regulator-reaction model and graphical notation. Concept of Graphical N otation. Concept of Graphical N otation. Generality ( regulator-reaction equation in SBML extension ) Process diagram (temporal order of reaction)

barton
Download Presentation

CADLIVE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CADLIVE GRAPHICAL NOTATION http://www.cadlive.jp

  2. Regulator-reaction model and graphical notation

  3. Concept of Graphical Notation Concept of Graphical Notation Generality(regulator-reaction equation in SBML extension) Process diagram (temporal order of reaction) Compactness (Each molecule appears once in adiagram) CADLIVE Other Notations

  4. Comparison of graphical notations

  5. Fundamental Notation

  6. New notation for domain level drawing

  7. Domain expansion • Virtual reactions and nodes • Link of a real node to virtual nodes • (InnerLink)

  8. (A) Phosphorylation reactions at the domain level. The protein of Pro is expanded into the domains of A and B. <1> The virtual node indicates the state that Pro is phosphorylated on the B domain. <2> The virtual node indicates the state that Pro is phosphorylated on the A domain. <3> The real node of phosphorylated Pro (Pro-P) is produced. The InnerLink arrow (green) shows that the A domain is phosphorylated. <4> The real node of Pro-P-P is produced. The InnerLink arrow shows both the A and B domains are phosphorylated. <5> The real node of Pro-P is produced by dephosphorylation of Pro-P-P. The InnerLink arrow indicates the B domain is phosphorylated.

  9. (B) A phosphorus exchange reaction (Pro1 + Pro2-P -> Pro1-P + Pro2). <1> The virtual node indicates the state that Pro1 is phosphorylated. <2> The real node of Pro2-P is produced. <3> The InnerLink arrow indicates that the real node is Pro1-P.

  10. (C) Synthesis of the protein complex of Pro1:Pro2:Pro3. <1> The virtual node indicates the state that the B domain of Pro1 is bound to the E domain of Pro2. <2> The virtual node indicates the state that the D domain of Pro2 is bound to the F domain of Pro3. <3> The real node of Pro1:Pro2 is produced. The InnerLink arrow indicates that the B domain of Pro1 is bound to the E domain of Pro2. <4> The real node of Pro1:Pro2:Pro3 is produced. The InnerLinik arrow indicates that the D domain of Pro2 is bound to the F domain of Pro3.

  11. Mammalian translation initiation system

  12. Separation of real reactions and nodes from a domain-level interaction map (A) A domain- or subunit- based map with virtual reactions and nodes. (B) A real map containing no virtual reaction and node. CADLIVE can switch off the display of subunits, domains, virtual reactions and nodes, and InnerLink.

  13. A hierarchical modular architecture by using WhiteBox One can pack molecular networks or modules into the WhiteBox. (A) The entire network. (B) Six functional modules. (C) Seven functional modules. (D) A biochemical network map at the domain-or subunit- level.

  14. Hiroyuki Kurata, Kentaro Inoue, Kazuhiro Maeda, Koichi Masaki, Yuki Shimokawa, Quanyu Zhao, Extended CADLIVE: a novel graphical notation for designing a biochemical network map that enables computational pathway analysis, Nucleic Acids Res. On the web 2007. Hiroyuki Kurata, Nana Matoba, Natsumi Shimizu, CADLIVE for constructing a large-scale biochemical network based on a simulation-directed notation and its application to yeast cell cycle. Nucleic Acids Res. 31: 4071-4084, 2003.

More Related