380 likes | 717 Views
Modular Arithmetic & Cryptography. CSC2110 Tutorial 8 Darek Yung. Outline. Quick Review Examples Q & A. Quick Review. Prime Modular Arithmetic Multiplicative Inverse Turing’s Code RSA. Prime. If p is a prime, GCD(a, p) = 1 unless a is multiple of p
E N D
Modular Arithmetic & Cryptography CSC2110 Tutorial 8 Darek Yung
Outline • Quick Review • Examples • Q & A
Quick Review • Prime • Modular Arithmetic • Multiplicative Inverse • Turing’s Code • RSA
Prime • If p is a prime, GCD(a, p) = 1 unless a is multiple of p • If p is a prime, p | a1 * a2 * … * aN implies p | ai for some i • Every natural number n > 1 has a unique prime factorization
Multiplicative Inverse • Multiplicative inverse can be calculated by • Repeated squaring • Integer linear combination
Turing’ Code (Version 1) • Secret: key k • Encryption: m’ = m * k • Decryption: m’ / k = (m * k) / k = m • Attacked by GCD(m1’, m2’) = GCD(m1k, m2k) = k
Turing’ Code (Version 2) • Public: large prime p • Secret: key k, k < p • Encryption: m’ = rem(mk, p), m < p • Decryption: • multiplicative inverse of k (mod p) k’ • m’ mk (mod p) • m’k’ mkk’ (mod p) m (mod p) • Plain text attack • Given m’, m, p • multiplicative inverse of m (mod p) m’’ • m’m’’ kmm’’ (mod p) k (mod p)
RSA • Generate two large primes p, q • Let n = pq, T = (p-1)(q-1) • Select e such that GCD(e,T) = 1 • Let d = multiplicative inverse of e (mod T)
RSA • Public: n, public key e • Secret: private key d • Encryption: m’ = me (mod n), m < n • Decryption: (m’)d med m (mod n)
Examples • Q20: False • Q21: False, modular arithmetic can be applied to INTEGER a, b • Q22: True, sum of digits is divisible by 9
Examples • Q23: True, difference between sum of even digits and sum of odd digits is divisible by 11 • Q24: False, either of a, a’ can be negative. e.g. n = 5, a = 3, a’ = -3 k = -2 • Q25: True
Examples • Q26: False, c may be multiple of n • Q27: False, k may be multiple of p
Examples • Q28: True • Q29: False, k may be multiple of p • Q30: False, k may be multiple of p and there is no multiplicative inverse of k (mod p)
Examples • Q31: True (false if p1 = p2) • Q32: True • Q33: False, Version 1.0 use simple multiplication
Examples • Q34: True (will show in long question) • Q35: True • Q36: False, unique m with respect to a specific k. A large number of (m, k) pair.
Examples • Q37: True • Q38: False, encrypted by public key • Q39: True • Q40: False, it is just to compute the power of an integer modulo another number
Examples • It is now 5pm on Sunday, What’s the time and the day of the week after 17965 hours • 17965 = 758(24) + 13 • 758 = 108(7) + 2 Tuesday • 13 + (5+12) = 30 = 1(24) + 6 6am Wed
Examples • Calculate 579572 (mod 21) by repeated squaring • 72 = 64 + 8 • 5795 20 (mod 21) • 57952 1 (mod 21) 57954 57958 579516 1 (mod 21) 579532 579564 1 (mod 21) • 579572 579564 * 57958 20 (mod 21)
Examples • Calculate multiplicative inverse of 47981 (mod 95963) • 95963 = 2(47981) + 1 1(95963) -2(47981) = 1 -2(47981) 1 (mod 95963) required multiplicative inverse = -2
Examples • Prove ac bc (mod p) and GCD(c, p) = 1 imply a b (mod p) for prime p • Since GCD(c, p) = 1, there exists c’ = multiplicative inverse of c (mod p) • ac bc (mod p) acc’ bcc’ (mod p) a b (mod p)
Examples • Given a b (mod p) and b c (mod p) implies a c (mod p) • And a b (mod p) implies a+cb+c (mod p) • Prove a b (mod p) and c d (mod p) imply a + c b + d (mod p) for prime p
Examples • Prove a b (mod p) and c d (mod p) imply a + c b + d (mod p) for prime p • a b (mod p) a + c b + c (mod p) • c d (mod p) c + b d + b (mod p) a + c b + c c + b d + b (mod p) a + c b + d (mod p)
Examples • Explain why a number written in decimal is divisible by 9 if and only if the sum of its digits is a multiple of 9 • 10 1 (mod 9) 10k 1k 1 (mod 9) • All decimal number, d, can be written in form: dk(10k) + dk-1(10k-1) + … + d1(101) +d0 d dk + dk-1 + … + d0 (mod 9) divisible by 9 if and only if the sum of its digits is a multiple of 9
Examples • Explain why a number written in decimal is divisible by 11 if and only if the difference between the sum of its odd digits and sum of its even digits is a multiple of 11 • 10 -1 (mod 11) 10k (-1)k (mod 11) • All decimal number, d, can be written in form: dk(10k) + dk-1(10k-1) + … + d1(101) +d0 d (-1)kdk + (-1)k-1dk-1 + … + (-1)0d0 (mod 11) d dk - dk-1 + dk-2… - d1 + d0 (mod 11) divisible by 11 if and only if the difference between the sum of its odd digits and sum of its even digits is a multiple of 11
Examples • Under Turing’s Code (Version 1.0), given key k = 47 • Encrypt message m1 = 569 • Encrypt message m2 = 751 • Get k by having m1 and m2
Example • Encrypt message m1 = 569 • m1’ = k * m1 = 26743 • Encrypt message m2 = 751 • m2’ = k * m2 = 35297 • How to crack?
Examples • GCD(m1’, m2’) = GCD(m1k, m2k) = k • 35297 = 1(26743) + 8554 • 26743 = 3(8554) + 1081 • 8554 = 7(1081) + 987 • 1081 = 1(987) + 94 • 987 = 10(94) + 47 • 94 = 2(47) + 0 GCD(35297, 26743) = 47 = k
Examples • Under Turing’s Code (Version 2.0), given prime p = 89, key k =48 • Encrypt message m = 78 • Compute multiplicative inverse of m (mod p) • Show how to perform plain-text attack
Examples • Encrypt message m = 78 • m’ = rem (mk, p) = rem (3744, 89) = 6 • Compute m’’ = multiplicative inverse of m (mod p) • 89 = 78 + 11 11 = 89 - 78 • 78 = 7(11) + 1 1 =78 – 7(11) 1 = 8(78) – 7(89) m’’ = 8
Examples • Plain-text attack: given m’, m and p • m’ m * k (mod p) m’’ * m’ m’’ * m * k k (mod p) • m’’ * m’ = 6 * 8 48 (mod p) k = 48