1 / 19

Lecture 2.1: Sets and Set Operations*

Lecture 2.1: Sets and Set Operations*. CS 250, Discrete Structures, Fall 2011 Nitesh Saxena * Adopted from previous lectures by Cinda Heeren. Course Admin. Slides from previous lectures all posted HW1 Posted Due at 11am 09/09/11 Please follow all instructions

bat
Download Presentation

Lecture 2.1: Sets and Set Operations*

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 2.1: Sets and Set Operations* CS 250, Discrete Structures, Fall 2011 Nitesh Saxena *Adopted from previous lectures by Cinda Heeren

  2. Course Admin • Slides from previous lectures all posted • HW1 Posted • Due at 11am 09/09/11 • Please follow all instructions • Recall: late submissions will not be accepted • Competency exams have been graded and will be returned today • What is a prime number? • Is 1 a prime? Lecture 2.1 -- Sets and Set Operations

  3. Outline • Set Definitions and Theory • Set Operations Lecture 2.1 -- Sets and Set Operations

  4. Note:   {} Set Theory - Definitions and notation A set is an unordered collection of elements. Some examples: {1, 2, 3} is the set containing “1” and “2” and “3.” {1, 1, 2, 3, 3} = {1, 2, 3} since repetition is irrelevant. {1, 2, 3} = {3, 2, 1} since sets are unordered. {1, 2, 3, …} is a way we denote an infinite set (in this case, the natural numbers).  = {} is the empty set or null set, or the set containing no elements. U: is the set of all possible elements in the universe Lecture 2.1 -- Sets and Set Operations

  5. A Venn Diagram B Set Theory - Definitions and notation x  S means “x is an element of set S.” x  S means “x is not an element of set S.” A  B means “A is a subset of B.” or, “B contains A.” or, “every element of A is also in B.” or, x ((x  A)  (x  B)). Lecture 2.1 -- Sets and Set Operations

  6. Set Theory - Definitions and notation A  B means “A is a subset of B.” A  B means “A is a superset of B.” A = B if and only if A and B have exactly the same elements. iff, A  B and B  A iff, A  B and A  B iff, x ((x  A)  (x  B)). So to show equality of sets A and B, show: • A  B • B  A Lecture 2.1 -- Sets and Set Operations

  7. A B Set Theory - Definitions and notation A  B means “A is a proper subset of B.” • A  B, and A  B. • x ((x  A)  (x  B))  x ((x  B)  (x  A)) • x ((x  A)  (x  B))  x ((x  B) v (x  A)) • x ((x  A)  (x  B)) x ((x  B) (x  A)) • x ((x  A)  (x  B)) x ((x  B)  (x  A)) Lecture 2.1 -- Sets and Set Operations

  8. Set Theory - Definitions and notation Quick examples: • {1,2,3}  {1,2,3,4,5} • {1,2,3}  {1,2,3,4,5} Is   {1,2,3}? Yes!x (x  )  (x  {1,2,3}) holds, because (x  ) is false. Is   {1,2,3}? No Is   {,1,2,3}? Yes Is   {,1,2,3}? Yes Lecture 2.1 -- Sets and Set Operations

  9. Yes Yes Yes No Set Theory - Definitions and notation Quiz time: Is {x}  {x}? Is {x}  {x,{x}}? Is {x}  {x,{x}}? Is {x}  {x}? Lecture 2.1 -- Sets and Set Operations

  10. : and | are read “such that” or “where” Primes Set Theory - Ways to define sets • Explicitly: {John, Paul, George, Ringo} • Implicitly: {1,2,3,…}, or {2,3,5,7,11,13,17,…} • Set builder: { x : x is prime }, { x | x is odd }. In general { x : P(x) is true }, where P(x) is some description of the set. Ex. Let D(x,y) denote “x is divisible by y.” Give another name for { x : y ((y > 1)  (y < x)) D(x,y) }. Lecture 2.1 -- Sets and Set Operations

  11. |S| = 3. |S| = 1. |S| = 0. |S| = 3. Set Theory - Cardinality If S is finite, then the cardinality of S, |S|, is the number of distinct elements in S. If S = {1,2,3}, If S = {3,3,3,3,3}, If S = , If S = { , {}, {,{}} }, If S = {0,1,2,3,…}, |S| is infinite. Lecture 2.1 -- Sets and Set Operations

  12. aka P(S) We say, “P(S) is the set of all subsets of S.” 2S = {, {a}}. 2S = {, {a}, {b}, {a,b}}. 2S = {}. 2S = {, {}, {{}}, {,{}}}. Set Theory - Power sets If S is a set, then the power set of S is 2S = { x : x  S }. If S = {a}, If S = {a,b}, If S = , If S = {,{}}, Fact: if S is finite, |2S| = 2|S|. (if |S| = n, |2S| = 2n) Lecture 2.1 -- Sets and Set Operations

  13. A,B finite  |AxB| = ? We’ll use these special sets soon! AxB |A|+|B| |A+B| |A||B| Set Theory - Cartesian Product The Cartesian Product of two sets A and B is: A x B = { <a,b> : a  A  b  B} If A = {Charlie, Lucy, Linus}, and B = {Brown, VanPelt}, then A x B = {<Charlie, Brown>, <Lucy, Brown>, <Linus, Brown>, <Charlie, VanPelt>, <Lucy, VanPelt>, <Linus, VanPelt>} A1 x A2 x … x An = {<a1, a2,…, an>: a1  A1, a2  A2, …, an  An}

  14. B A Set Theory - Operators The union of two sets A and B is: A  B = { x : x  A v x  B} If A = {Charlie, Lucy, Linus}, and B = {Lucy, Desi}, then A  B = {Charlie, Lucy, Linus, Desi} Lecture 2.1 -- Sets and Set Operations

  15. B A Set Theory - Operators The intersection of two sets A and B is: A  B = { x : x  A  x  B} If A = {Charlie, Lucy, Linus}, and B = {Lucy, Desi}, then A  B = {Lucy} Lecture 2.1 -- Sets and Set Operations

  16. B A Sets whose intersection is empty are called disjoint sets Set Theory - Operators The intersection of two sets A and B is: A  B = { x : x  A  x  B} If A = {x : x is a US president}, and B = {x : x is in this room}, then A  B = {x : x is a US president in this room} =  Lecture 2.1 -- Sets and Set Operations

  17. A • = U and U =  Set Theory - Operators The complement of a set A is: A = { x : x  A} If A = {x : x is bored}, then A = {x : x is not bored} =  U Lecture 2.1 -- Sets and Set Operations

  18. U A B Set Theory - Operators The set difference, A - B, is: A - B = { x : x  A  x  B } A - B = A  B Lecture 2.1 -- Sets and Set Operations

  19. Today’s Reading • Rosen 2.1 Lecture 2.1 -- Sets and Set Operations

More Related