1 / 22

Repositionable Liquid Micro-Lenses With Variable Focal Length (1’st presentation)

Repositionable Liquid Micro-Lenses With Variable Focal Length (1’st presentation). Institute : 奈微所 Name : 楊志誠 Student ID : d9635804. Outline. Introduction Theory Design and Fabrication Experimental Results Conclusion. 同質量的液體以球形的表面積最小 因此水珠通常以球形式存在 這樣才符合自由能最小化的自然法則.

bat
Download Presentation

Repositionable Liquid Micro-Lenses With Variable Focal Length (1’st presentation)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Repositionable Liquid Micro-Lenses With Variable Focal Length (1’st presentation) Institute : 奈微所 Name : 楊志誠 Student ID: d9635804

  2. Outline • Introduction • Theory • Design and Fabrication • Experimental Results • Conclusion 同質量的液體以球形的表面積最小 因此水珠通常以球形式存在 這樣才符合自由能最小化的自然法則 [MIT John W. M. Bush (April 2004).]

  3. Introduction • Surface Tension • Weight scales as L3 and surface tension scales as L1 • Hence weight decreases more rapidly than surface tension • Hence insects can walk on water and coins can float on water

  4. Method of Microfludic Transfer Micro-fludic Transfer Centrifugal Force Pressure Gradient Capillary 毛細效應 Electric-Field Magnetic Electro-Osmosis 電 滲 Electro-Wetting 電 潤 濕 Dielectrophorsis 介電泳

  5. Theory - No moving parts - 電 潤 濕 (Electro-wetting) 介 電 泳 Dielectrophoresis (DEP) 電 滲 Electro-osmosis

  6. Theory (Electro-Wetting) :Lippmann-Young Equation(1875) ε 為真空中的介電係數 εr為介電材料的電介質 t 為介電材料的厚度 r 為 表面張力 低消耗功率及高速之微流體/液滴系統計與作分析 國家科學委員會補助專題研究計畫 NSC91-2218-E-007-043-

  7. Paper Contribution : 1.None of old approaches have allowed lateral lens with high accuracy positioning 2.Lens diameter : 700μm Electrodes width : 100 μm Positioning accuracy : 100μm

  8. Design and Fabrication Process Flow : a) Photo-resist structure starting 525μm thickness by HF etching b) The grooves are filled with ITO using lift-off c) The system covered with 800nm SiO2 layer d) The barrier grid is etched into SiO2 e) The droplet contact is sputtered onto the wafer using lift-off Note:透明導電電極技術(indium tin oxide,簡稱 IT O,氧化銦錫)

  9. Experimental Results Movement & No movement: 1.Voltage Pulse amplitude 2.Voltage Pulse width Condition: Grid: 100μm mesh 300nm depth The electrodes are covered by a dielectric layer (800nm PECVD silicon dioxide)

  10. Experimental Results (continue) Lippmann´s Equation & “Lens maker’s formula” D: diameter of the micro-lens n: refractive index U: Voltage Volume : 1.9 nl • The turning range is in focal length is roughly two times initial focal length • Increasing the voltage U therefore increases the focal length [2]

  11. Conclusion • Precise positioning and focal tuning of liquid micro lens • Achieved 100 μm high-resolution positioning control with the need for large numbers of electrodes • Successfully using voltage pluses (pluses width & High) control liquid movement with the resolution of grid spacing

  12. Thank you for your attention!

  13. Reference [1] Modeling of Electrowetting Surface Tension for Addressable Microfludic System: Dominant Physical Effects,Material Dependences,and Limiting Phenomena, 2003,IEEE,Bennjamin Shapriri et. al.,UCAL,USA [2} OPTICAL CHARACTERIZATION OF REPOSITIONABLE LIQUID MICRO-LENSES, IEEE,2007,p2573-p2576 [3] Equilibrium and dynamic behavior of micro flows under electrically induced surface tension actuation forces Fortner, N.; Shapiro, B.;MEMS, NANO and Smart Systems, 2003. Proceedings. International Conference on20-23 July 2003 Page(s):197 - 202 [4]. B. Shapiro, H. Moon, R. Garrell, and C. J.Kim, "Equilibrium Behavior of Sessile Drops under Surface Tension, Applied External Fields, and Material Variations," Journal of Applied Physics (to appear), 2002. [5]. www-math.mit.edu/~bazant/talks/NU06.ppt [6]. www.physics.harvard.edu/~tomhunt/present/mrs_sf_apl04.ppt [7]. www.math.umd.edu/~dio/RIT/Biomem/Shapiro-RIT-15March07.pdf [8] Marc Madou, Fundamentals of Microfabrication, chapter 9, CRC Press, (1997). [9] Gregory T.A. Kovacs,Micromachined Transducers Sourcebook, chapter. 9, pp.845 McGraw- Hill,(2000).

  14. Appendix Micro- & Nanofluidics Electrical Instrumentation Microelectronics Micromaterial Department of Microsystems Engineering 15 Professor University of Freiburg,Germany Process Technology Systems Theorie Simulation Design of Microsystems Micro-actuators Micro-optics http://www.imtek.de/

  15. “Induced-Charge Electro-osmosis” = nonlinear electro-osmotic slip at a polarizable surface Bazant & Squires, Phys, Rev. Lett. 92, 0066101 (2004). Example: An uncharged metal cylinder in a suddenly applied DC field Same effect for metals & dielectrics , DC & AC fields… www-math.mit.edu/~bazant/talks/NU06.ppt

  16. Scale Law Analysis

  17. + - + + Review of Dielectrophoresis (DEP) conducting cover slip electric field lines microfluidic chamber suspended particle micropost to RF voltage source www.physics.harvard.edu/~tomhunt/present/mrs_sf_apl04.ppt

  18. Review of electrowetting www.math.umd.edu/~dio/RIT/Biomem/Shapiro-RIT-15March07.pdf

  19. 氣─固─液界面的三角關係 當液體潤濕固體表面時,原本氣─固的界面被液─固的界面所取代,而氣─固與液─固之界面張力的差,稱之為「濕潤張力」。當氣─固的界面張力大於液─固的界面張力時,也就是固體和液體間的吸引力大於固體和氣體間的吸引力時,固體和氣體間的界面張力會將液─固界面拉伸。換句話說,被濕潤的固體表面有較低的界面張力,因此液體會在固體表面擴張。 當液體滴在固體表面上時,固體表面和液滴切線的夾角,就是所謂的接觸角。假使接觸角小,如水滴在玻璃基板上的情形,表示液體易濕潤固體表面。但是,如果接觸角像水銀液滴在玻璃基板上那麼大,代表液體不易濕潤此表面。而濕潤張力和接觸角的關係,可以用楊格方程式(Young's equation)表示:氣─固與液─固界面張力的差等於氣─液界面張力乘上接觸角的餘弦函數。考慮兩種極端的情形,當接觸角為 0 度時,表示液體能完全的濕潤於固體表面;當接觸角為 180 度時,代表液體完全不能濕潤於固體表面。 從固─氣的界面張力觀點來看,當接觸角越小,餘弦函數(cosθ)會越大,固─氣的界面張力也會越大,此時表示固體表面較易被濕潤。而當接觸角越大,固─氣的界面張力越低(如鐵氟龍),代表越不易被濕潤。 液滴在表面的接觸角示意圖。上圖為疏水性的接觸;下圖為親水性的接觸。

  20. Surface tension • Represented by the symbol σ, γ or T, is defined as the force along a line of unit length • Where the force is parallel to the surface but perpendicular to the line. A soap bubble balances surface tension forces against internal pneumaticpressure. a needle floating on the surface of water. Its weight, fw  , balanced by the surface tension forces on either side, fs  , Water striders using water surface tension when mating.

  21. Surface and body force

  22. SURFACE TENSION http://www.online-tensiometer.com/oberfl/frame_oberfl_values.html

More Related