90 likes | 231 Views
GAMMA Experiment. Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment. 4 Y.Gallant, 1 A.Garyaka, 2 A.D.Erlykin 5 L.Jones, 1 R.Martirosov, 2 N.Nikolskaya, 3 J.Procureur, 1 S.Ter-Antonyan. 1 Yerevan Physics Institute
E N D
GAMMA Experiment Rigidity-dependent cosmic ray energy spectra in the knee region obtained with the GAMMA experiment 4Y.Gallant, 1A.Garyaka, 2A.D.Erlykin 5L.Jones, 1R.Martirosov,2N.Nikolskaya, 3J.Procureur, 1S.Ter-Antonyan 1 Yerevan Physics Institute 2 Moscow Physics Institute 3 Centre d Etudes Nucleaires Bordeaux-Gradignan, 4 Universite Montpellier II 5 University of Michigan Astroparticle Physics 28/2 (2007) 169/ arXiv: 0704.320v1 [astro-ph]
GAMMA Experiment GAMMA Facility • Location: • Armenia, Mt.Aragats • 3200 m a.s.l. • EAS array: • 33x3 (1x1x0.05) m3+ • +9 (0.3x0.3x0.05) m3 • Muon hall: • 2500 g/cm2 of rock • 150 (1x1x0.05)m3 • EAS data: • Nch > 5 105 (100%) • R < 25 m (50 m) • < 300 • N(R<50m) > 103 • E > 5 GeV • T = 6.2107 sec
GAMMA Experiment Measurement errors and particle spectra Ln(Nch ) 0.1, s0.05, x,y0.5-1m, 1.50 Ln(N ) 0.35-0.2 at N(R<50m)103-105 Particle density spectra Single particle spectra Ri < 50 m 15 detectors
Detector response CORSIKA(EGS,NKG) NA=200, A p, He, O, Fe • s(7m < ri < 90m)
GAMMA Experiment CORSIKA6.031(NKG) Simulated database: WA(EA , X) {A, EA} X(Ne , Nµ , Nh , s , x0 , y0 , θ, ) Emax= 500PeV = -1.5 < 300 R < 25m Ee,> 1 MeV E > 150 MeV Muon hall: E > 4 GeV (e,FLUKA)
EAS Inverse Problem: 1)Combined Analysis, nd.f.= 350 2)2D-Analysis, F(X) d2F/dNedN , nd.f.= 240 3)4D-Analysis, F(X) d4F/dNedNdsdcos, nd.f.= 1640
Primary energy spectra SIBYLL Results of 1-2D Combined Analysis 1 = 0.0950.008 [m-2s-1sr-1TeV-1] 2 = 0.100.012 3-16 = 0.0430.007 (O - like) 17-26 = 0.0240.004 (Fe - like) ER = 2500200 TV 2/nd.f.2.0 B.Wiebel & P.Biermann, 24th ICRC (1995) A.Lagutin et al., 29th ICRC (2005)
Verification Enlarged EAS data (R<50m) Knee positions Test of KASCADE primary energy spectra by GAMMA EAS data WZ(E,X) fZ(E) dE = F(X) z • fp , fHe , fO=fC+fSi , fFe
GAMMA Experiment Conclusion • The obtained primary energy spectra strongly depend on interaction model. • The SIBYLL interaction model is more preferable. • Rigidity-dependent spectra describe the EAS data at • least up to E~100 PeV. • All-particle primary energy spectrum slightly depends on interaction model. • The energy spectra of primary nuclei disagreewith the same KASCADE data in 1-100 PeV energy range, however, the discrepancies of the all-particle energy spectra obtained by the GAMMA and KASCADE are sufficiently small (~20%).