1 / 4

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung. Wichtige Begriffe. Zuerst einmal müssen wir uns mit einigen Begriffen der Wahrscheinlichkeitsrechnung auseinandersetzen: Zufallesexperiment : Der Ausgang eines Versuches ist nur vom Zufall abhängig

bathsheba
Download Presentation

Wahrscheinlichkeitsrechnung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wahrscheinlichkeitsrechnung

  2. Wichtige Begriffe Zuerst einmal müssen wir uns mit einigen Begriffen der Wahrscheinlichkeitsrechnung auseinandersetzen: Zufallesexperiment: Der Ausgang eines Versuches ist nur vom Zufall abhängig Elementarereignis: Damit bezeichnet man jedes erdenkliche Ergebnis eines Zufallsexperiments Ereignisraum: hier fassen wir alle Elementarereignisse zusammen. Nennt man auch Menge der Elementarereignisse. Ereignis : jetzt wird die mathematische Definition kompliziert, man definiert ein Ereignis als Teilmenge des Ereignisraumes. Ereignis Elementarereignis Ereignisraum oder Menge der Elementarereignisse

  3. Sind alle Ergebnisse eines Zufallsexperiments gleichwahrscheinlich, dann kann man die Wahrscheinlichkeit p(A), wobei A ein mögliches Ereignis ist, nach LaPlace folgendermaßen berechnen: aber das habt ihr ja schon gehört.. Nehmen wir wieder das Beispiel des Würfelns her: Das Zufallsexperiment = das Werfen der Würfel Elementarereignis = die geworfenen Augenzahl (1, 2, 3, 4, 5, oder 6) Ereignisraum = {1; 2; 3; 4; 5; 6} Ereignis= da gibt es viele Möglichkeiten; einige Beispiele: Eine gerade Zahl werfen; eine Zahl größer als 4 werfen; genau die Zahl 5 werfen,usw. Sei das Ereignis A der Wurf einer geraden Zahl, so ist p(A)=3/6 also p(A) =1/2=0,5 Das heißt die Wahrscheinlichkeit eine gerade Zahl zu werfen liegt bei 50%. Wie kann man dieses Ergebnis interpretieren?

  4. Wenn wir das Zufallsexperiment viele Male wiederholen, wird die Anzahl der geraden Augenzahlen ungefähr gleich der Anzahl der ungeraden Augenzahlen sein. Dies bedeutet, dass die berechnete Wahrscheinlichkeit ungefähr gleich der relativen Häufigkeit sein wird. Hier kommen wir zum Gesetz der großen Zahlen: Je größer die Anzahl von Versuchen ist, desto deutlicher stabilisiert sich die relative Häufigkeit eines Ereignisses um einen bestimmten festen Wert – seine Wahrscheinlichkeit. Die Wahrscheinlichkeit kann als Zahlenwert (Gott sei Dank, sonst könnten wir ja nicht damit rechnen) zwischen 0 und 1 ausgedrückt werden 1 100% sicheres Ereignis 0 0% unmögliches Ereignis In unserem Beispiel wäre der Wurf der Zahl 7 ein unmögliches Ereignis, der Wurf einer Zahl zwischen 1 und 6 ein sicheres Ereignis.

More Related