70 likes | 211 Views
Analysis Tools for Numerical Simulations of Estuaries. Parker MacCready University of Washington NANOOS PI Meeting 2/1/2006 Newport, OR. Motivation. The initial scope of my part of the NANOOS Pilot was to develop “quality” metrics.
E N D
Analysis Tools for Numerical Simulations of Estuaries Parker MacCready University of Washington NANOOS PI Meeting 2/1/2006 Newport, OR
Motivation • The initial scope of my part of the NANOOS Pilot was to develop “quality” metrics. • This is relatively straightforward, and is already being done as part of the CORIE system. • => I have put my effort into developing useful metrics that: • (1) We are able to compute because we have the full 3-D fields calculated by the numerical simulations • (2) Give insight into the function of the system
Progress • Metrics related to time-dependence (adjustment time and sensitivity) developed (theory, a simple numerical model, and comparison with observations) and submitted to J. Phys. Oceanogr. • Metrics related to flow of mechanical energy in the system developed and presented as a talk at ERF 2005. • Draft write-up of “Analysis Tools” done in December 2005. I am now working with Antonio and his Master’s student on implementing them in the CORIE system.
Quasi-steady response of the length of the salt intrusion to varying QR • This is a “classical” metric, which we know observationally for a number of estuaries • It can be distilled into the exponent in a power law relating the length of the salt intrusion to the river flow
Consider the effects of time-dependence • Estuaries take time to adjust to their forcing conditions. • The ratio of the adjustment time to the forcing timescale can strongly affect whether or not the estuary “feels” the effects of a given change in forcing • Example: Stratification is generally MORE sensitive than you would predict from a quasi-steady theory, whereas the length of the salt intrusion is LESS sensitive.
The Mechanical Energy Budget • By evaluating terms in the volume-integrated, tidally-averaged energy budget, we may better understand how an estuary “works” • In this example the long residence time is a consequence of the huge reservoir of potential energy stored in the length of the salt intrusion
Conclusion • The advent of realistic 3-D numerical simulations of estuarine circulation and salinity structure (and eventually ecosystems) gives us much greater ability to develop metrics to describe and compare these systems.