1 / 24

The best of both worlds?

Investigating the relationship between galaxy distribution and mass density to refine distance estimation models. Discusses the challenges and benefits of combining different analytical approaches in galaxy surveys.

bcoe
Download Presentation

The best of both worlds?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SAMSI: Mar 2006 The best of both worlds? Towards combining design-based and parametric approaches to analysing galaxy surveys Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK

  2. SAMSI: Mar 2006 • Previous session: introduction to Malmquist bias and how it • affects estimating galaxy distances • ‘Malmquist Correction’ methods (very) parametric • Optimal approach depends on what we are using galaxy distances • for(there may be other systematic biases besides Malmquist anyhow). • Example: using galaxy distances to estimate peculiar velocity field, • and constrain the mean density of dark matter on large scales. • Peculiar velocity = motion of a galaxy over and above the • Hubble expansion, due to the gravitational influence of its • surroundings. i.e. galaxy peculiar velocities trace the local • density field of all matter – not just the luminous matter. How are the galaxy and mass distribution related?…

  3. SAMSI: Mar 2006 Simplest model: linear biasing b= linear bias parameter, related to peculiar velocities via So galaxy distances  peculiar velocities  to constrain Underlying density field of all matter Density field of luminous matter, (smoothed version of galaxy distribution) Dimensionless mean matter density of the Universe

  4. SAMSI: Mar 2006 Problem: Through the late 90s – early 00s: dichotomy of inferred values of and . Could discrepancy be down to problems with correcting for Malmquist bias?… Could a ‘design-based’ approach (c.f. Efron & Petrosian) help? Rauzy & Hendry (2000) - ROBUST method for fitting peculiar velocity field models

  5. SAMSI: Mar 2006 Robust Method Assumption: luminosity function is Universal Spatial distribution Selection effects Luminosity function Null hypothesis (Rauzy 2001) Angular and radial Selection function Step function

  6. Robust Method: Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distance modulus m . . . . . . . . . . . . . . . Mlim(mi ) . . . . . . . . . . . . . . . . (Mi, mi) . . . . . . . . . . mlim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute magnitude M SAMSI: Mar 2006

  7. Robust Method: Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distance modulus m . . . . . . . . . . . . . . . Mlim(mi ) . . . . . . . . . . . . . . . . (Mi, mi) . . . . . . . . . . mlim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1 S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute magnitude M SAMSI: Mar 2006

  8. Robust Method: Completeness m* > mlim SAMSI: Mar 2006

  9. Robust Method: Completeness Define:- where Can show:- P1: P2: uncorrelated SAMSI: Mar 2006

  10. Robust Method: Completeness Also:- but only for SAMSI: Mar 2006

  11. Robust Method: Completeness Also:- but only for SAMSI: Mar 2006

  12. Robust Method: Velocity Field Model Assuming define Can show:- P3: uncorrelated Estimate b via SAMSI: Mar 2006

  13. Robust Method Strength: Robust support for VELMOD analysis: validity of inhomogeneous Malmquist corrections Weakness: Completeness requirement may restricts sample size and depth From Rauzy & Hendry 2000 SAMSI: Mar 2006

  14. SAMSI: Mar 2006 Rauzy, Hendry & D’Mellow (2001) P1: P2: and are independent • If we have the wrong LF model, P1 and P2 are not satisfied

  15. e.g. Schechter model, For each use K-S statistic to test P1: use sample correlation coefficient to test P2: Define

  16. e.g. Schechter model, For each use K-S statistic to test P1: use sample correlation coefficient to test P2: Define

  17. SAMSI: Mar 2006 c.f ML approach: If the LF model is a good descriptor of the true distribution, 2[Lmax – L(a,M*)] ~ c2

  18. SAMSI: Mar 2006 c.f ML approach: If the LF model is a good descriptor of the true distribution, 2[Lmax – L(a,M*)] ~ c2 ‘Toy’ evolution model: Gaussian LF,

  19. SAMSI: Mar 2006 c.f ML approach: If the LF model is a good descriptor of the true distribution, 2[Lmax – L(a,M*)] ~ c2 ‘Toy’ evolution model: Gaussian LF, Model rejected

  20. SAMSI: Mar 2006 Questions / Issues • How sensitive are robust methods to measurement errors? • How to extend to ‘fuzzy’ selection / truncation? • How to extend to multi-dimensional cases? • (e.g. bivariate distribution of luminosity, surface brightness) • How to extend the K-S test to >1d? • Can ROBUST be useful as a diagnostic of systematic errors? • (e.g. where separability assumption breaks down) • (What’s wrong with 2dF?)

  21. Millennium galaxy catalog of Driver et al. (2003) Volume-limited subset of data

  22. SAMSI: Mar 2006

More Related