520 likes | 572 Views
Josephson qubits. P. Bertet. SPEC, CEA Saclay (France ), Quantronics group. Introduction : Josephson circuits for quantum physics. From a fundamental question (25 years ago ) …. CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ????. YES THEY CAN
E N D
Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group
Introduction : Josephson circuits for quantum physics From a fundamental question (25 yearsago) …. CAN MACROSCOPIC « MAN-MADE » ELECTRICAL CIRCUITS BEHAVE QUANTUM-MECHANICALLY ???? YES THEY CAN Discreteenergylevels M.H. Devoret, J.M. Martinis and J. Clarke, PRL85, 1908 (1985) M.H. Devoret, J.M. Martinis and J. Clarke, PRL85, 1543 (1985) … to genuine quantum information and quantum opticson a chip … ANDMUCH MORE TO COME !! M. Hofheinz et al., Nature (2009) Q. state engineering and Tomography M. Neeley et al., Nature (2011) 3-qubitentanglement
Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics Lecture 3: 2-qubit gates and quantum processor architectures
Outline Lecture 1: Basics of superconducting qubits 1) Introduction: Hamiltonian of an electrical circuit 2) The Cooper-pair box 3) Decoherence of superconducting qubits Lecture 2: Qubitreadout and circuit quantum electrodynamics Lecture 3: 2-qubitgates and quantum processor architectures
Real atoms quantization Hydrogen atom |3> |2> |1> E01=E1-E0=hn01 « two-level atom » |0> I.1) Introduction
Hydrogen atom Optical Bloch equations + spontaneous emission G laser Spectroscopy (weak field) Rabi oscillations (short pulses, strong field at n=n01) |0> |0> n01 1 FWHM =G/2p P(1) P(1) (a.u) |1> 0 Time (a.u) Frequency n (a.u) Real atoms quantization I.1) Introduction
Electrical harmonic oscillator f +q k x -q m |4> E |3> Quantum regime ?? |2> |1> |0> X,f I.1) Introduction
2 conditions : |4> E |3> |2> Typic : |1> |0> At T=30mK : X,f |4> E |3> |2> |1> OK if dissipation negligible |0> Superconductors at T<<Tc X,f LC oscillator in the quantum regime ? I.1) Introduction
Microwave superconducting resonators Q=4 1010 at 51GHz and at 1K Tc(Nb)=9.2K Quantum regime S. Kuhr et al., APL90, 164101 (2006) T<<Tc : dissipation negligble at GHz frequencies I.1) Introduction
|4> E |3> |2> |1> |0> X,f Necessity of anharmonicity f +q -q How to prepare |1> ? Need non-linear and non dissipative element : Josephson junction I.1) Introduction
Josephson DC relation : Josephson AC relation : B. Josephson, Phys. Lett.1, 251 (1962) P.W. Anderson & J.M. Rowell, Phys. Rev.10, 230 (1963) S. Shapiro, Phys. Rev.11, 80 (1963) Basics of the Josephson junction The building block of superconducting qubits I.1) Introduction
Josephson DC relation : Classical variables ?? Josephson AC relation : NON-LINEAR INDUCTANCE POTENTIAL ENERGY Basics of the Josephson junction The building block of superconducting qubits I.1) Introduction
Hamiltonian of an arbitrary circuit = = Correct procedure described in : HAMILTONIAN ??? M. H. Devoret, p. 351 in Quantum fluctuations (Les Houches 1995) G. Burkard et al., Phys. Rev. B 69, 064503 (2004) G. Wendin and V. Shumeiko, cond-mat/0508729 M.H. Devoret, lectures at Collège de France (2008) accessible online
Hamiltonian of an arbitrary circuit = = HAMILTONIAN ??? 1) Identify the relevant independent circuit variables 2) Write the circuit Lagrangian 3) Determine the canonical conjugate variables and the Hamiltonian
Hamiltonian of an arbitrary circuit branch node = = Identifying the relevant independent circuit variables 1) Choosereferencenode (ground)
Hamiltonian of an arbitrary circuit = = Identifying the relevant independent circuit variables 1) Choosereferencenode (ground) 2) Choose « spanningtree » (no loop)
Hamiltonian of an arbitrary circuit Fd Fc = Fb Fe Fa = Identifying the relevant independent circuit variables 1) Choosereferencenode (ground) 2) Choose « spanningtree » (no loop) 3) Define « treebranch fluxes »
Hamiltonian of an arbitrary circuit Fd Fc F4= Fb+Fd F3 F2 = Fb Fe Fa F1 F5 = Identifying the relevant independent circuit variables 1) Choosereferencenode (ground) 2) Choose « spanningtree » (no loop) 3) Define « treebranch fluxes » 4) Definenode fluxes = sum of branch fluxes fromground
Hamiltonian of an arbitrary circuit Fd Fc F4= Fb+Fd F3 F2 = Fb Fe Fa F1 F5 = WriteLagrangian takingintoaccountconstraintsimposed by externalbiases (fluxes or charges) F2 F1 Fext
Hamiltonian of an arbitrary circuit Fd Fc F4= Fb+Fd F3 F2 = Fb Fe Fa F1 F5 = Conjugate variables : With Quantum Hamiltonian ClassicalHamiltonian or with
NIST Santa Barbara Different types of qubits Cooper-pair boxes Flux qubits Phase qubits TU Delft MIT Berkeley NEC Saclay Chalmers NEC Yale ETH Zurich Charge qubit/Quantronium/Transmon Junctions sizes 100mm2 .04mm2 .01 to 0.04 mm2 Shape Of the Potential Energy I.2) Cooper-Pair Box
NIST Santa Barbara Different types of qubits Cooper-pair boxes Flux qubits Phase qubits TU Delft MIT Berkeley NEC Saclay Chalmers NEC Yale ETH Zurich Charge qubit/Quantronium/Transmon Junctions sizes 100mm2 .04mm2 .01 to 0.04 mm2 Shape Of the Potential Energy I.2) Cooper-Pair Box
The Cooper-Pair Box 1 degree of freedom 1 knob « chargingenergy »
small or The split CPB inductance 2 d° of freedom 2 knobs
The split CPB 1 d° of freedom 2 knobs tunable
Energy levels of the CPB ( ) Solve either in charge basis |N> Diagonalize I.2) Cooper-Pair Box
Energy levels of the CPB ) … or in phasebasis |q> ( Solve Mathieu equation I.2) Cooper-Pair Box
Two simple limits : (1) (charge regime) EJ/Ec=0 Energy |N=0> |N=1> |N=2> Ng q N N q
Two simple limits : (1) (charge regime) EJ/Ec=0.1 E2(Ng) Energy E1(Ng) QUBIT E0(Ng) Ng=0.01 Ng
Two simple limits : (1) (charge regime) EJ/Ec=0.1 E2(Ng) Energy E1(Ng) QUBIT E0(Ng) Ng=0.5 Ng
From to EJ/Ec=0.5 EJ/Ec=2 Energy Ng Ng EJ/Ec=10 EJ/Ec=5 Energy Ng Ng STILL A QUBIT !
Two simple limits : (2) (phase regime) J. Koch et al., PRA (2008) EJ/Ec=10 Ng I.2) Cooper-Pair Box
Experimentalspectrum of a transmon J. Schreier et al., PRB (2008)
One-qubit gates Ng(t)=DNgcoswt F TRANSMON QUBIT transmon drive Two-level approximation I.2) Cooper-Pair Box
One-qubit gates w=w01 f0 F Rotation : X TRANSMON QUBIT |0> Z X Y |1> I.2) Cooper-Pair Box
One-qubit gates w=w01 f0 f0+f F Xf Rotation : X TRANSMON QUBIT |0> Z X Y f Xf |1> I.2) Cooper-Pair Box
One-qubit gates w=w01 f0 f0+f F+dF Xf Rotation : X TRANSMON QUBIT |0> Z Z rotation X Y f Xf All rotations on Bloch sphere Fidelity ? J.M. Chow et al., PRL 102, 090502 (2009) |1> I.2) Cooper-Pair Box
Decoherence Ng+dNg(t) F+dF(t) Noise in Hamiltonian parameters DECOHERENCE MAJOR OBSTACLE TO QUANTUM COMPUTING I.3) Decoherence
Pure dephasing li(t) t Low-frequency noise Decoherence in superconducting qubits (Ithier et al., PRB 72, 134519, 2005) Relaxation (Spontaneous emission) environmental density of modes at qubit frequency I.3) Decoherence
Decoherence Ng+dNg(t) F+dF(t) Noise in Hamiltonian parameters DECOHERENCE Origin of the noise ??? I.3) Decoherence
Decoherence Ng+dNg(t) F+dF(t) Noise in Hamiltonian parameters R DECOHERENCE R Origin of the noise ??? 1) ELECTROMAGNETIC Low-frequency : Johnson-Nyquist due to thermal noise High-frequency : spontaneous emission (quantum noise) Under control I.3) Decoherence
Decoherence e- Spin flips Ng+dNg(t) F+dF(t) Noise in Hamiltonian parameters R DECOHERENCE R Origin of the noise ??? Flux noise Charge noise 2) MICROSCOPIC Low-frequency noise well studied : High-frequency (GHz) microscopic noise TOTALLY UNKNOWN !! I.3) Decoherence
Decoherence e- Ng+dNg(t) Spin flips F+dF(t) Noise in Hamiltonian parameters R DECOHERENCE R Origin of the noise ??? Flux noise Charge noise 2) MICROSCOPIC Low-frequency noise well studied : CPB in charge regime High-frequency (GHz) microscopic noise TOTALLY UNKNOWN !! Transmon I.3) Decoherence
State-of-the-art coherence times T1=1-2ms T2=1-3ms Schreier et al., PRB 77, 180502 (2008) I.3) Decoherence
Very recent breakthrough: transmon in 3D cavity H. Paik et al., quant-ph (2011) T1=60ms T2=15ms ULTIMATE LIMITS ON COHERENCE TIMES UNKNOWN YET I.3) Decoherence
Fabrication techniques Al/Al2O3/Al junctions O2 small junctions e-beam lithography 1) e-beam patterning 2) development 3) first evaporation 4) oxidation 5) second evap. 6) lift-off 7) electrical test PMMA PMMA-MAA SiO2 small junctions Multi angle shadow evaporation I.3) Decoherence
gate 160 x160 nm QUANTRONIUM (Saclay group) I.3) Decoherence
FLUX-QUBIT (Delft group) I.3) Decoherence
TRANSMON QUBIT (Saclay group) 40mm I.3) Decoherence 2mm