1 / 65

Introduction to Computer Science 1

Introduction to Computer Science 1. Topic 6: Generative Recursion. Outline. Introduction to generative recursion Sorting with generative recursion Guidelines for the design of generative recursive procedures Structural versus generative recursion Traversing graphs. Generative Recursion.

becky
Download Presentation

Introduction to Computer Science 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Computer Science 1 Topic 6: Generative Recursion

  2. Outline • Introduction to generative recursion • Sorting with generative recursion • Guidelines for the design of generative recursive procedures • Structural versus generative recursion • Traversing graphs

  3. Generative Recursion • So far, we have used structural recursionto process structurally recursive data • We have decomposed the data to their immediate structural components • We have processed these components and combined the results • However: • Not all problems can be solved using structurally recursive functions • Even if there is a structurally recursive solution for a problem, it might not be optimal • Now we will consider a new programming style: Generative recursion

  4. Generative Recursion • DIVIDE and CONQUERis an important principle underlying generative recursion • If the problem is trivial to solve, the solution for the trivial case is returned • Otherwise: • Divide the problem in new smaller problems (generate new sub-problems not necessarily derived from the structure of data) • Conquer the sub-problems by applying the same technique recursively • Combine the solutions for the sub-problems into a solution for the original problem • The design of generative recursive programs is more an ad-hoc activity as compared to the design of the structural recursive programs • Needs an insight – a "EUREKA!"

  5. Modeling a rolling ball on a table Task Description: • Assume that we want to write a program that simulates a ball rolling on a table • The ball rolls at a constant speed until it drops off the edge of the table • We can model the table as a canvas/surface with a pre-defined length and width • The ball can be represented as a disc that moves across the canvas • The disc movement can be represented by repeating the following steps: • Draw the disc at the current position on the canvas • Wait for a certain pre-defined time • Erase the disc at the current position • Move to a new position

  6. Ball Structure and Operations ;;TeachPack: draw.ss ;; structure: (make-ball number number number number) (define-struct ball (x y delta-x delta-y)) ;; draw-and-clear : a-ball -> true (define (draw-and-clear a-ball) (and (draw-solid-disk (make-posn (ball-x a-ball) (ball-y a-ball)) 5 'red) (sleep-for-a-while DELAY) (clear-solid-disk (make-posn (ball-x a-ball) (ball-y a-ball)) 5 'red)))

  7. Ball Structure and Operations ;; move-ball : ball -> ball (define (move-ball a-ball) (make-ball (+ (ball-x a-ball) (ball-delta-x a-ball)) (+ (ball-y a-ball) (ball-delta-y a-ball)) (ball-delta-x a-ball) (ball-delta-y a-ball))) ;; Dimension of canvas (define WIDTH100) (define HEIGHT100) (define DELAY.1)

  8. To move the ball multiple times we can write: This gets tedious after a while. We need a function that moves the ball until it is out of bounds. Ball Structure and Operations (define the-ball (make-ball10 20 -5 +17)) (and (draw-and-clear the-ball) (and (draw-and-clear (move-ball the-ball)) ...))

  9. Rolling the Ball Determine whether a-ball is outside of the bounds: Template for moving the ball until it is out of bounds: ;; out-of-bounds? : a-ball -> boolean (define (out-of-bounds? a-ball) (not (and (<= 0 (ball-x a-ball) WIDTH) (<= 0 (ball-y a-ball) HEIGHT)))) The trivial case: return true ;; move-until-out : a-ball -> true (define (move-until-out a-ball) (cond [(out-of-bounds? a-ball) ... ] [else ...])) true ?

  10. Rolling the Ball After drawing and moving the ball, we apply move-until-out again, which means the function is recursive: (define (move-until-out a-ball) (cond [(out-of-bounds? a-ball) true] [else (and (draw-and-clear a-ball) (move-until-out (move-ball a-ball)))])) We can now test the function as follows: The code creates a canvas of proper size and a ball that moves to the bottom left of the canvas. (startWIDTHHEIGHT) (move-until-out (make-ball1020-5+17)) (stop)

  11. A New Type of Recursion The procedure move-until-out uses a new type of recursion: • conditions have nothing to do with the input data • recursive application in the body does not use part of the input • move-until-outgenerates an entirely new and different ball structure and uses it for the recursion We do not have a design recipe for this (define (move-until-out a-ball) (cond [(out-of-bounds? a-ball) true] [else (and (draw-and-clear a-ball) (move-until-out (move-ball a-ball)))]))

  12. Outline • Introduction to generative recursion • Sorting with generative recursion • Guidelines for the design of generative recursive procedures • Structural versus generative recursion • Traversing graphs

  13. Sorting: Quicksort and Mergesort • We are once more concerned with sorting the elements of a list … • We have seen insertion sort: • a structural recursive procedure • Now we will see two other algorithms for sorting: Quicksort and Mergesort • Two classic examples of generative recursion • Based on the idea of divide and conquer

  14. [Reminder: insertion sort] ;; insertion-sort: list-of-numbers  ->  list-of-numbers ;; creates a sorted list of numb. from numbers in alon (define (insertion-sort alon) (cond [(empty? alon) empty] [else (insert (first alon) (insertion-sort (rest alon)))])) unsorted sorted an an

  15. Quicksort : The Idea • An arbitrary intermediate step: sorting an arbitrary sub-list: L0=(list elp…elr) • Divide: PartitionL0 in two (possibly empty) lists, L1=(list elp…elq-1) and L2=(list elq+1…elr), such that each element of L1 is smaller than elq, and the latter is in turn smaller than each element in L2 • Conquer: Apply the same procedure recursively to sort L1 and L2 • Combine: simply concatenate the sorted lists pivot element elq < elq > elq

  16. Quicksort : The Idea • Two open questions: • How do we select the pivot element? • We always use the first element • When do we stop? That is: what is the trivial case of Quicksort? • The empty list is always sorted!

  17. Sort (list 11 8 7 14): Pivot item is 11. Two sub-lists: (list 8 7) and (list 14) Sort (list 8 7) and (list 14) Concatenate sorted sub-lists: (list 7 8),11 and (list 14) 11 (list 14) (list 8 7) empty 14 empty 8 empty (list 7) empty 7 empty (list 14) (list 7) (list 7 8) (list 7 8 11 14) Quicksort @ Work

  18. QuicksortSchematically pivot item

  19. quick-sort distinguishes two cases: If the input is empty, it returns empty. Otherwise, it performs generative recursion. Each sub-list is sorted separately, using quick-sort The sorted versions of the two lists are then combined using append Quicksort Algorithm ;; quick-sort : (listof number) -> (listof number) (define (quick-sort alon) (cond [(empty? alon) empty] [else (append (quick-sort (below alon (first alon))) (list (first alon)) (quick-sort (above alon (first alon))) ) ]))

  20. Auxiliary Functions of Quicksort • above filters out the items that are larger than threshold: • below filters out the items that are smaller than threshold: (define (above alon threshold) (filter1 > alon threshold))) (define (below alon threshold) (filter1 < alon threshold)))

  21. Quicksort Evaluation Example (quick-sort (list 11 8 14 7)) = (append (quick-sort (list 8 7)) (list 11) (quick-sort (list 14))) = (append (append (quick-sort (list 7)) (list 8) (quick-sort empty)) (list 11) (quick-sort (list 14))) = (append (append (append (quick-sort empty) (list 7) (quick-sort empty)) (list 8) (quick-sort empty)) (list 11) (quick-sort (list 14))) = ...

  22. Quicksort Evaluation Example = (append (append (append empty (list7) empty) (list 8) empty) (list 11) (quick-sort (list 14))) = (append (append (list 7) (list 8) empty) (list 11) (quick-sort (list 14))) = (append (list 78) (list 11) (quick-sort (list 14))) = ...

  23. mergesort:The Idea Idea: (a) split the list in the middle, (b) apply the function to the sub-lists recursively, (c) merge the two sorted lists into a new sorted list

  24. 8 5 4 2 9 6 2 3 3 4 5 6 8 9 Merging two ordered lists • Given two ordered lists, ls1 and ls2, • how do we merge them into a new ordered list?

  25. Merging two ordered lists ;; merge: ;; listof number listof number -> listof number (define (merge ls1 ls2) (cond [(empty? ls1) ls2] [(empty? ls2) ls1] [(< (first ls1) (first ls2)) (cons (first ls1) (merge (rest ls1) ls2)) ] [else (cons (first ls2) (merge ls1 (rest ls2)))] ) )

  26. mergesort:algorithm in Scheme (define (merge-sort alon) (local ((define (merge-step left right) (cond [(>= left right) alon] [else (local ( (define mid (floor (/ (+ left right) 2))) (define left-list (merge-sort (extract alon left mid))) (define right-list (merge-sort (extract alon (+ mid 1) right)))) (merge left-list right-list) ) ] ))) (merge-step 1 (length alon))))

  27. mergesort algorithm in Scheme ;; extract : (listof X) number number -> (listof X) ;; to extract all elments of list alox from ;; index left to index right (define (extract alox left right) (cond [(empty? alox) empty] [(> left right) empty] [(> left 1) (extract (rest alox) (- left 1) (- right 1))] [else (cons (first alox) (extract alox (+ left 1) right))]))

  28. Outline • Introduction to generative recursion • Sorting with generative recursion • Guidelines for the design of generative recursive procedures • Structural versus generative recursion • Traversing graphs

  29. Guidelines for Designing Generative Recursive Procedures • Understand the nature of the procedure's data • Describe the process in terms of data, creating a new structure or partitioning a list of numbers • Distinguish between input data, • which can be processed trivially, • and those which cannot • The generation of problems is the key to algorithm design • The solutions of the generated problems must be combined

  30. Six Stages of Structural Design • Data analysis and design: • analyze and define the data collections representing the problem • Contract, purpose, header • specify what the function does • explain in general terms how it works • Function examples: • illustrate how the algorithm proceeds for some given input • Template: • follow a general template • Definition: • answer the questions posed by the template • Test • Test the completed function • Eliminate the bugs

  31. General Template for Generative Recursive Functions (define (generative-recursive-fun problem) (cond [(trivially-solvable? problem) (determine-solution problem)] [else (combine-solutions ... problem ... (generative-recursive-fun (generate-problem-1 problem)) ... (generative-recursive-fun (generate-problem-n problem)))]))

  32. Procedure Definition • What is a trivially solvable problem, and the pertaining solution? • How do we generate new problems that are easier to solve than the initial problem? • Is there one new problem to generate, or are there more? • Is the solution for the given problem the same as for (one of) the new problems? • Or do we have to combine solutions to create a solution for the initial problem? • If so, do we require parts of the data constituting the initial problem?

  33. Termination of Structurally Recursive Procedures • So far, each function has produced an output for a valid input  evaluation of structurally recursive procedures has always terminated. • Important characteristic of the recipe for structurally recursive procedures: • each step of natural recursion uses an immediate sub-component of the input, not the input itself • Because data is constructed in a hierarchical manner, the input shrinks at every stage • The function sooner or later consumes an atomic piece of data and terminates.

  34. Termination of Generative Recursive Procedures • This characteristic is not true for generative recursive functions. • The internal recursions don't consume an immediate component of the input but some new piece of data, which is generated from the input. • This step may produce the initial input over and over again and thus prevent the evaluation from ever producing a result • We say that the program is trapped in an INFINITE LOOP.

  35. Non-Terminating Procedures • What happens if we place the following three expressions at the bottom of the DrScheme's Definitions window and click execute? • Does the second expression ever produce a value so that the third expression is evaluated and the canvas disappears? (startWIDTHHEIGHT) (move-until-out (make-ball102000)) (stop)

  36. Non-Terminating Procedures The slightest mistake in process definition may cause an infinite loop ;; below : (listof number) number -> (listof number) (define (below alon threshold) (filter1 <= alon threshold) instead of < Quicksort does not terminate with the new function (quick-sort (list 5)) = (append (quick-sort (below 5 (list 5))) (list 5) (quick-sort (above 5 (list 5)))) = (append (quick-sort (list 5)) (list 5) (quick-sort (above 5 (list 5))))

  37. Termination Argument • The termination argument is an additional step in the design recipe of generative recursive procedures • Termination argument explains • why the process produces an output for every input • how the function implements this idea • when the process possibly does not terminate

  38. Termination Argument for Quicksort At each step, quick-sortpartitions the list into two sublists using below and above. Each function produces a list that is smaller than the input (the second argument), even if the pivot element (the first argument) is an item on the list. Hence each recursive application ofquick-sort consumes a strictly shorter list than the given one. Eventually, quick-sort receives an empty list and returns empty.

  39. New Termination Cases Termination argument may reveal additional termination cases. This knowledge can be added to the algorithm: E.g., (below N (list N)) and (above N (list N)) always produce empty (define (quick-sort alon) (cond [(empty? alon) empty] [(empty? (rest alon)) alon] [else (append (quick-sort (smaller-items alon (first alon))) (list (first alon)) (quick-sort (larger-items alon (first alon))) )]))

  40. Guidelines for Algorithm Design

  41. Outline • Introduction to generative recursion • Sorting with generative recursion • Guidelines for the design of generative recursive procedures • Structural versus generative recursion • Traversing graphs

  42. trivially-solvable? empty? generate-problem rest Structural Recursion as a Special Case of Generative Recursion Template for generative recursion (define (generative-recursive-fun problem) (cond [(trivially-solvable? problem) (determine-solution problem)] [else (combine-solutions problem (generative-recursive-fun (generate-problem problem)))])) Template for list processing (define (generative-recursive-fun problem) (cond [(empty? problem) (determine-solution problem)] [else (combine-solutions problem (generative-recursive-fun (rest problem)))]))

  43. Structural vs. Generative Recursion • Is there a difference between structural and generative recursion? • Structurally recursive functions seem to be just special cases of generative recursion • But this "it's all the same" attitude does not improve the understanding of the design process • Structurally and generative recursive functions are designed using different approaches and have different consequences.

  44. Greatest Common Denominator (GCD) • Examples • 6 and 25 are both numbers with several denominators: • 6 is evenly divisible by 1, 2, 3, and 6; • 25 is evenly divisible by 1, 5, and 25. • The greatest common denominator of 25 and 6 is 1. • 18 and 24 have many common denominator : • 18 is evenly divisible by 1, 2, 3, 6, 9, and 18; • 24 is evenly divisible by 1, 2, 3, 4, 6, 8, 12, and 24. • The greatest common denominator is 6.

  45. GCD Based on Structural Recursion Test for every number i = [min(n,m) .. 1] whether it divides both n and m evenly and return the first such number. ;; gcd-structural : N[>= 1] N[>= 1] -> N ;; structural recursion using data definition of N[>= 1] (define (gcd-structural n m) (local ((define (first-divisor i) (cond [(= i 1) 1] [(and (= (remainder n i) 0) (= (remainder m i) 0)) i] [else (first-divisor (- i 1))])] ) ) ) (first-divisor (min m n)))) inefficient for large numbers

  46. Analysis of Structural Recursion • gcd-structural simply tests every number whether it divides both n and m evenly and returns the first such number • For small natural numbers, this process works just fine • However, for (gcd-structural 101135853 450146405) = 177 the procedure will compare 101135853 – 177 = 101135676 numbers! • Even reasonably fast computers spend several minutes on this task. • Enter the definition of gcd-structural into the Definitions window and evaluate the following expression… in the Interactions window … and go get a coffee  (time (gcd-structural 101135853 450146405))

  47. GCD Euclidean Algorithm • The Euclidean algorithm to determine the greatest common denominator (GCD) of two integers is one of the oldest algorithms known • Appeared in Euclid's Elements around 300 BC • However, the algorithm probably was not discovered by Euclid and it may have been known up to 200 years earlier. Insight: For two natural numbersnandm, n > m, GCD(n, m) = GCD(m,remainder(n,m)) (gcd larger smaller) = (gcd smaller (remainder larger smaller)) Example: GCD(18, 24) = GCD(18,remainder(24/18)) = GCD(18,6) = GCD(6,0) = 6

  48. GCD Generative Algorithm ;; gcd-generative : N[>= 1] N[>=1] -> N (define (gcd-generative n m) (local ((define (clever-gcd larger smaller) (cond [(= smaller 0) larger] [else (clever-gcd smaller (remainder larger smaller))]))) (clever-gcd (max m n) (min m n)))) clever-gcd is based on generative recursion: • The trivially solvable case, when smaller is 0 • The generative step calls clever-gcd with smaller and (remainder larger smaller) (gcd-generative 101135853 450146405) needs only 9 iterations!

  49. GCD Euclidean Algorithm Let n = mq + r, then any number u which dividesbothn and m (n = su and m = tu), also dividesr r = n – qm = su – qtu = (s – qt)u Any number v which divides both m and r(m = s’v and r = t’v ), also divides n n = qm + r = qs´v + t´v = (s´q + t´)v • Therefore, every common denominator of n and m is also a common denominator of m and r. • gcd(n,m) = gcd(m,r) • It is enough if we continue the process with m and r • Since r is smaller in absolute value than m, we will reach r = 0 after a finite number of steps.

  50. Which one to use? • Question: can we conclude that generative recursion is better than structural recursion? • Answer: no, not automatically. • Even a well-designed generative procedure is not always faster than structural recursion. • e.g., quick-sortwins over insertion sort only for large lists • Structural recursion is easier to design • Designing generative recursive procedures often requires deep mathematical insight • Structural recursion is easier to understand • It may be difficult to grasp the idea of the generative step.

More Related