1 / 67

Presenter : Min- Chia Chang Advisor : Prof. Jane Hsu Date : 201 1 - 06 -30

智慧型節能:使用感測網路自動偵測異常空調狀態之研究 Intelligent Sensing for Energy Saving : A Case Study on Detecting Abnormal Air-Conditioning States Using A Sensor Network. Presenter : Min- Chia Chang Advisor : Prof. Jane Hsu Date : 201 1 - 06 -30. Outline. Introduction System Analysis Conclusion .

bedros
Download Presentation

Presenter : Min- Chia Chang Advisor : Prof. Jane Hsu Date : 201 1 - 06 -30

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 智慧型節能:使用感測網路自動偵測異常空調狀態之研究Intelligent Sensing for Energy Saving : A Case Study on Detecting Abnormal Air-Conditioning States Using A Sensor Network Presenter : Min-Chia Chang Advisor : Prof. Jane Hsu Date : 2011-06 -30

  2. Outline • Introduction • System • Analysis • Conclusion NTU CSIE iAgent Lab

  3. Energy Saving • Reason • Policy NTU CSIE iAgent Lab

  4. Power Consumptionin a Building (source : Continental Automated Buildings Association, CABA) NTU CSIE iAgent Lab

  5. Architecture of Central A/C System • Chilled water host • Evaporator • Condenser • Other devices • Pump • Cooling tower NTU CSIE iAgent Lab

  6. Energy Conservation for Central A/C System • Device setting • The setting ofthe chiller water [Zhao, Enertech Engineering Company] • Parameter optimization of the cooling tower[James and Frank 2010] • Building automation system • Component • Energy saving controller • Infrared motion sensor (source :NTU 電機學系) NTU CSIE iAgent Lab

  7. Power Consumption in NTU CSIE • Total • 9,036.4 KWH/day ≒ 28,012 NTD/day ( January 2009 - April 2011 ) (source : NTU 校園數位電錶監視系統) • Central A/C system ( July 2010 - April 2011 ) • 3,693.8KHW/day • 40.88% of the total (source : NTU 校園數位電錶監視系統)

  8. Abnormal A/C State in NTU CSIE • Ideal power consumption KWH NTU CSIE iAgent Lab

  9. Abnormal A/C State in NTU CSIE • Real power consumption A/C is turned off ? KWH NTU CSIE iAgent Lab

  10. Control of Central A/C System • Central • Chilled water host • Off mode • On mode (All year on duty) • Local • A/C controller • Off mode • Venting mode • Cooling mode NTU CSIE iAgent Lab

  11. Abnormal A/C State in NTU CSIE Hot Cold NTU CSIE iAgent Lab

  12. Outline • Introduction • System • Analysis • Conclusion NTU CSIE iAgent Lab

  13. System Overview NTU CSIE iAgent Lab

  14. Wireless Sensor Network NTU CSIE iAgent Lab

  15. Sensors • Platform : Taroko • Temperature and humidity sensor : SHT11 • Infrared motion sensor NTU CSIE iAgent Lab

  16. Nodes in the Sensor Network • Sender • (temperature, humidity, ID) • (preamble, motion value, ID) • Receiver • Data saving : 1 minute • Relay NTU CSIE iAgent Lab

  17. Collection Unit • Room : divide into zones according to A/C controller • Environmental data • temperature and humidity • vent • indoor • occupancy state vent indoor motion sensor NTU CSIE iAgent Lab

  18. Deployment • One server per floor (1F to 5F) • Relays deploy around the corridors NTU CSIE iAgent Lab

  19. Deployment • Room • Class room : R104 • Computer class room : R204 • Professor room : R318 • Laboratory : R336 • Seminar room : R324, R439, R521 NTU CSIE iAgent Lab

  20. A/C Mode Recognition NTU CSIE iAgent Lab

  21. A/C Mode • Mode • Off mode : blower= off • Venting mode : blower = on , valve = off • Cooling mode : blower= on , valve = on power A/C temperature setting A/C mode wind velocity ≧ indoor temperature < Off Venting Cooling NTU CSIE iAgent Lab

  22. A/C Mode Recognition • GOAL : • Using machine learning to build the model for recognizing the A/C mode • ASSUMPTION : • People control the A/C mode part of according to the weather • INPUT : • Feature vector • OUTPUT : • A/C mode NTU CSIE iAgent Lab

  23. Features NTU CSIE iAgent Lab

  24. Annotation • Method 1 • Control on purpose • Method 2 • Record by camera NTU CSIE iAgent Lab

  25. Dataset NTU CSIE iAgent Lab

  26. Evaluation • Each zone builds a model • 4-fold cross validation • Constraint : couldn’t collect all the weather patterns • The weather pattern in testing data doesn’t exist in training data NTU CSIE iAgent Lab

  27. Steps of the Experiment 2 • Cluster • Algorithm : k-means (k=4) • Feature: outdoor temperature, outdoor humidity • Leave-one-out Cross Validation 336_2 outdoor humidity outdoor temperature NTU CSIE iAgent Lab

  28. Preprocessing • Missing data treatment • Encoding • Recognize the data is missing or not • Linear interpolation • All missing data are temperature and humidity • If the first or last data is missing data • Replace with global mean after the interpolation • Normalization • Min-max normalization : [0,1] • It prevents features with large scale biasing the result NTU CSIE iAgent Lab

  29. Experiment Result • Result • Each zone’s accuracy in experiment 2 is higher than 85% • Each zone’s accuracy in experiment 1 is higher than experiment 2 • 204_5 has the highest accuracy (only 2 label) NTU CSIE iAgent Lab

  30. Thermal Comfort Calculation NTU CSIE iAgent Lab

  31. Thermal Comfort Calculation • GOAL : • Find thermal comfort range of the environment • INPUT : • Questionnaire • OUTPUT : • Thermal comfort range NTU CSIE iAgent Lab

  32. PMV • Predicted Mean Vote model [Fanger 1970] • Calculated analytically by 6 factors : [-3, +3] • Metabolic rate • Clothing insulation • Air temperature • Radiant temperature (Outdoor temperature) • Relative humidity • Air velocity NTU CSIE iAgent Lab

  33. Thermal Sensation Scale • Thermal sensation scale [ASHRAE Standard 55] • Adaptive method to get PMV • Constraints • Metabolic rate : 1.0Met - 2.0Met • Clothing insulation : ≦ 1.5 Clo • Comfortable or not • -1, 0, +1 : yes • -2, -3, +2, +3 : no NTU CSIE iAgent Lab

  34. Thermal Comfort - Linear Regression • Field survey • Collect thermal sensation vote (TSV) • Outdoor temperature has the highest relevance with thermal comfort • TC=17.8+0.31TO(Worldwide) [deDearand Brager 1998] • TC=18.3+0.158TO(Hong Kong)[Mui and Chan 2003] • TC=15.5+0.29TO(Taiwan)[Lin et al. 2008] NTU CSIE iAgent Lab

  35. Questionnaire • Thermal sensation scale :{-3, -2, -1, 0 ,+1, +2, +3} • Direct question : {comfortable, not comfortable} • Metabolic rate : {after sport, static activity} • Clothing insulation : {sleeveless, shirt-sleeve, long-sleeve, thick coat} VALID ! NTU CSIE iAgent Lab

  36. Data Collection NTU CSIE iAgent Lab

  37. Result • Linear regression equation • TC=20.6+0.107TO • TC=17.8+0.31TO(Worldwide) • TC=18.3+0.158TO(Hong Kong) • TC=15.5+0.29TO(Taiwan) NTU CSIE iAgent Lab

  38. PMV - PPD • Predicted of Percentage Dissatisfied model [Olesen and Bragen 2004] • Typical standard :80% acceptability, (PMV, PPD)= (±0.85, 20) • Higher standard : 90% acceptability, (PMV, PPD)= (±0.50, 10) NTU CSIE iAgent Lab

  39. Thermal Comfort Range • Regression • Indoor temperature • Mean thermal sensation vote (PMV) during each ℃ 2.67 NTU CSIE iAgent Lab

  40. Thermal Comfort Range 2.67 NTU CSIE iAgent Lab

  41. A/C State Evaluation NTU CSIE iAgent Lab

  42. A/C State Evaluation • GOAL : • Classify the room’s A/C state to normal or abnormal • INPUT : • Each zone • Occupancy state • A/C mode • Indoor temperature • Thermal comfort range • OUTPUT : • A/C state NTU CSIE iAgent Lab

  43. A/C State people in the room A/C = turned on A/C= cooling mode N N N Y Y Y normal abnormal indoor temperature ? comfort range normal lower within higher abnormal abnormal normal NTU CSIE iAgent Lab

  44. Outline • Introduction • System • Analysis • Conclusion NTU CSIE iAgent Lab

  45. Analysis of Abnormal A/C States Abnormal A/C States Detecting System normal/ abnormal useful information history data analysis User NTU CSIE iAgent Lab

  46. Target Room • Room • Class room : R104 • Computer class room : R204 • Professor room : R318 • Laboratory : R336 • Seminar room : R324, R439, R521 NTU CSIE iAgent Lab

  47. Valid Data • From January 2011 to May 2011 NTU CSIE iAgent Lab

  48. Professor Room - R318 weekday distribution during a week weekend NTU CSIE iAgent Lab

  49. Seminar Room – R439 distribution during a week weekday weekend NTU CSIE iAgent Lab

  50. Class Room – R104 distribution during a week weekday weekend NTU CSIE iAgent Lab

More Related