480 likes | 925 Views
??. Ontology HowNet vs SUMO/WordNet/VerbNet. Ontology. ???Ontology Ontology?IT/NLP. ???Ontology. Ontology??? Ontology???. Ontology???. ????Ontology AI/KR??Ontology ????Ontology ??????Ontology ?????Ontology IT??Ontology. Ontology???????. ????? ????? ?????????. Ontology?IT/NLP. simi
E N D
1. Ontology ? HowNet ??? ??
dzd@keenage.com dongqiang@keenage.com
www.keenage.com
Research Centre of Computer & Language Engineering
Chinese Academy of Sciences
???
2003.08
2. ?? Ontology
HowNet vs SUMO/WordNet/VerbNet
3. Ontology ???Ontology
Ontology?IT/NLP
4. ???Ontology Ontology???
Ontology???
5. Ontology??? ????Ontology
AI/KR??Ontology
????Ontology
??????Ontology
?????Ontology
IT??Ontology
6. Ontology??????? ?????
?????
?????????
7. Ontology?IT/NLP similar to a dictionary or glossary, but with greater detail and structure that enables computers to process its content. An ontology consists of a set of concepts, axioms, and relationships that describe a domain of interest. An upper ontology is limited to concepts that are meta, generic, abstract and philosophical …
-- Standard Upper Ontology (SUO) Working Group
???????????????????????,?????????????????????????????????????
--«??»
8. ???Ontology Cyc: http:// www.cyc.com
IFF: The IFF Foundation Ontology
WordNet: http://www.cogsci.princeton.edu
EuroWordNet: http: //www.hum.uva.nl/ewn/
HowNet: http://www.keenage.com
SUMO: http://ontology.teknowledge.com
EDR: http://www.iijnet.or.jp
VerbNet: http://www.cis.upenn.edu/verbnet/
Prototype(sinica): http://ckip.iis.sinica.edu.tw/CKIP/ontology/
9. HowNet vs SUMO/WordNet/VerbNet SUMO –
Suggested Upper Merged Ontology
Mapping WordNet to SUMO
10. SUMO – Suggested Upper Merged Ontology SUMO Sources
SUMO Subclass Hierarchy Tree
11. SUMO Subclass Hierarchy Tree making
constructing
manufacture
publication
cooking
searching
pursuing
investigating
diagnostic process
social interaction
change of possession
giving
unilateral giving
lending
getting
unilateral getting
borrowing
12. Motivation for Mapping How can a formal ontology be used effectively by those who lack extensive training in logic and mathematics?
How can an ontology be used automatically by
applications?
How can we know when an ontology is complete?
13. «??»???
14. Basic Data – Sememes Sememes 2219
Entity 154
thing (physical, mental, fact)
component (part, fitting)
time
space (direction, location)
Event (relation, state?action) 818
Attribute 248
Value 892
Secondary feature 107
15. Basic Data – Concept Definition
NO.=020957
W_C=???
G_C=N
E_C=
W_E=college student
G_E=N
E_E=
DEF={human|?:{study|??:agent={~},location={InstitutePlace|??:domain={education|??},modifier={HighRank|??},{study|??:location={~}},{teach|?:location={~}}}}}
16. Basic Data – Taxonomies - {thing|??} {entity|??:{ExistAppear|??:existent={~}}}
- {physical|??} {thing|??:HostOf={Appearance|??},
{perception|??:content={~}}}
- {animate|??} {physical|??:HostOf={Age|??},
{alive|??:experiencer={~}},{die|?: experiencer={~}},
{metabolize|??: experiencer={~}},
{reproduce|??:agent={~},PatientProduct={~}}}
- {AnimalHuman|??} {animate|??:HostOf={Sex|??},
{AlterLocation|?????:agent={~}},{StateMental|??
??:experiencer={~}}}
- {human|?} {AnimalHuman|??:HostOf={Name|??}
{Wisdom|??}{Ability|??},
{think|??:agent={~}},{speak|?:agent={~}}}
17. S-relation Trigger -- Browser
18. D-relation Trigger -- Application Tools Relevant Concept Field Builder (????????)
Cf. “seed list” Bonnie Dorr & Tiejun Zhao: “??”/“??”
Sense Similarity Calculator (????????)
“??”Vs“??”/“?”
Chinese Chunk Extractor (???????)
19. ????????? (1) Semantic Web
ontology annotation
thesaurus
???: Semantic Processing && Semantic Web Service
(?????????????)
Named Entity Recognition
Tianfang Yao, Wei Ding, Gregor Erbach: CHINERS: A
Chinese Named Entity Recognition System for the
Sports Domain
20. ????????? (2) Word Sense Disambiguation
Chi-Yung Wang: Knowledge-based Sense Pruning using the
HowNet: an Alternative to Word Sense
Disambiguation
Wong Ping Wai: A Maximum Entropy Approach to HowNet-
Based Chinese Word sense Disambiguation
Word Similarity Computing
Liu Qun Li Su Jian: Word Similarity Computing Based on
HowNet
21. ????????? (3) Sense Annotation
Dependency Relation Annotation
Li MingQin, LI Juanzi : Building A Large Chinese Corpus
Annotated with Semantic Dependency
Cross-language Developing
?????????????????HowNet Big5+?
?????????(NDAP)
http://ndap.org.tw/NewsLetter/content.html?subuid=559&uid=26
22. Thank you
23. ??????? ?????????
?mapping?linking?merging
??????
????????????????
24. ????????????? ???????? – ???????
???????? – ?????
???????????“??”
??????????????WordNet
?????????SUMO???????
???????????????? – ????
25. Chinese WordNet or English Hownet? ?????,???????????????,??«??»
(HowNet, http://www.keenage.com)???????????
1995????????????/?????????????
???????????2002???????????????
?,?????????
«??»??????????;?????????????
?????????????????????????,??
??????????????????,?????????
??????????,?????????????,???
?????????,????????????,?????
????????«??»?,??????????,???
????????????????????????????
???????,???????????????,????
????,????????,?????????,????,
?????????,???????????(inter-operability)????
26. Records in WordNet / HowNet Record in WordNet
03592879 06 n 02 watch 0 ticker 1 012 @ 03506835 n 0000 ~ 02187181 n 0000 %p 02529205 n 0000 ~ 02570752 n 0000 %p 02659936 n 0000 ~ 02841320 n 0000 %p 03021820 n 0000 ~ 03104263 n 0000 ~ 03150171 n 0000 ~ 03410656 n 0000 %p 03593482 n 0000 ~ 03636122 n 0000 | a small portable timepiece
Record in HowNet
NO.=007738
W_C=?
G_C=N
E_C=?~,?~,?~,??~,??~,????~,??~???
W_E=watch
G_E=N
E_E=
DEF={tool|??:{tell|??:content={time|??},instrument={~}}}
27. Axiom in SUMO / HowNet (1) See SUMO_buy.doc
Cf. HowNet Event Relation & Role shifting
{buy|?} <----> {obtain|??} [consequence];
agent OF {buy|?}=possessor OF {obtain|??};
possession OF {buy|?}=possession OF {obtain|??}.
{buy|?} (X) <----> {sell|?} (Y) [mutual implication];
agent OF {buy|?}=target OF {sell|?};
source OF {buy|?}=agent OF {sell|?};
possession OF {buy|?}=possession OF {sell|?};
cost OF {buy|?}=cost OF {sell|?}.
28. Axiom in SUMO / HowNet (2) {buy|?} [entailment] <----> {choose|??};
agent OF {buy|?}=agent OF {choose|??};
possession OF {buy|?}=content OF {choose|??};
source OF {buy|?}=location OF {choose|??}.
{buy|?} [entailment] <----> {pay|?};
agent OF {buy|?}=agent OF {pay|?};
cost OF {buy|?}=possession OF {pay|?};
source OF {buy|?}=taget OF {pay|?}.
29. Thematic Roles in VerbNet / HowNet See VerbNet_buy.doc
Thematic Roles
Agent[+animate OR +organization]
Asset[+currency]
Beneficiary[+animate OR +organization]
Source[+concrete]
Theme[]
Cf. HowNet Event Role with Typical Actors
¦ + {buy|?} {take|?:agent={human|?}{group|??->},
possession={artifact|???->},source={human|?}
{InstitutePlace|??},cost={money|??},
beneficiary={human|?}{group|??->},
domain={economy|??}}
30. Components of HowNet Taxonomy(??????)
Roles and Features(???????)
Specifications of KDML(????????)
Knowledge Database(???)
Event Relations & Role Shifting
(?????????)
Maintenance Tools(??????)
APIs (????)
31. Nature of HowNet An online knowledge-base which reveals
the relationship among concepts, and the
relationship among attributes of concepts
-- Dong Zhendong, "Knowledge Description: What, How and who?", Proceedings of International Symposium on Electronic Dictionary, Tokyo, 1988, p.18
32. Theory of HowNet Knowledge is a system of relationships among
concepts and among attributes of concepts
Everything is constantly changing in a specific
time and space, and converts from one state to another. The conversion embodies the change of its attributes
33. Guidelines of Design Computer-oriented
Relationship is the key; to reveal the relationship is the main objective of HowNet
Based on sememes
Use of KDML
Defining concepts in a static & isolate way
Relationship is activated in a dynamic way
34. Concept Definitions in HowNet (1) ??:DEF={human|?:domain={medical|?},
HostOf={Occupation|??},{doctor| ??:
agent={~}}}
??:DEF={human|?:domain={medical|?},
{SufferFrom|??:experiencer={~}},
{doctor|??:patient={~}}}
??: DEF={InstitutePlace|??:{doctor|??:
location={~},content={disease|??}},
domain={medical|?}}
35. Concept Definitions in HowNet (2) ??:DEF={document|??:{record|??:
content={disease|??},LocationFin={~}},
domain={medical|?}}
??:DEF={Health|??:
host={AnimalHuman|??}}
??:DEF={unhealthy|??}
¦ ¦ + {HealthValue|???}
¦ ¦ ¦ + {healthy|??}
¦ ¦ ¦ + {unhealthy|??}
36. Concept Definitions in HowNet (3) ?:{disease|??} {phenomena|??:
{doctor|??:content={~}},{SufferFrom|??
:content={~}},RelateTo={medicine|??}
{Health|??}{HealthValue|???},
domain={medical|?}}
?: {medicine|??} {artifact|???:{doctor|??
:instrument={~}},RelateTo={disease|??},
domain={medical|?}{chemistry|??}}
37. Identity of description in differentlanguage structures (1) W_C=? W_C=??
G_C=V G_C=N
E_C= E_C=
W_E=rob W_E=plane
G_E=V G_E=N
E_E= E_E=
DEF={rob|?} DEF={aircraft|???}
38. Identity of description in differentlanguage structures (2) W_C=??
G_C=V
E_C=
W_E=hijack a plane
G_E=V
E_E=
DEF={rob|?:possession={aircraft|???}}
39. Identity of description in differentlanguage structures (3) W_C=???
G_C=N
E_C=
W_E=hijacker
G_E=N
E_E=
DEF={human|?:{rob|?:agent={~},
possession={aircraft|???}}}
40. Identity of description in differentlanguage structures (4) W_C=?????
G_C=V
E_C=
W_E=catch a hijacker
G_E=V
E_E=
DEF={catch|??:patient={human|?:
{rob|?:agent={~},
possession={wealth|??}}}}
41. Identity of description in differentlanguage structures (1) W_C=?????????
G_C=V
E_C=
W_E=catch a woman hijacker cleverly
G_E=V
E_E=
DEF={catch|??:manner={clever|?},
patient={human|?:{rob|?:agent={~},
possession={wealth|??}},
modifier={female|?}}}
42. Applications of HowNet 1. Semantic tagging
2. WSD,Sense Pruning
3. Sensitive information detection
4. Information filtering
5. Similarity of words
6. Semantic Web
7. Match of WordNet
43. Future work Construction of resouces
English HowNet
Chinese message structure bank
Increase of languages
Developing more APIs and tools
Administration
Membership
44. Ontology????? (1) a specification of a conceptualization
the theory of objects and their ties
similar to a dictionary or glossary, but with greater detail and structure that enables computers to process its content. An ontology consists of a set of concepts, axioms, and relationships that describe a domain of interest. An upper ontology is limited to concepts that are meta, generic, abstract and philosophical …
45. Ontology????? (2) the study of what there is, an inventory of what exists …What we may call ontology is the attempt to say what entities exist. Metaphysics, by contrast, is the attempt to say, of those entities, what they are.
the study of the categories of things that exist or may exist in some domain
The word ontology comes from the Greek ontos for being and logos for word.
46. Cost for French in EuroWordNet For the development of French language, here were 2 partners:
Avignon (AVI) and Memodata (MEM). The following was requested :
AVI MEMPersonnel 72000 85000Equipment 3000 0Travel & assistance 5000 1500Consumables & computing 3000 300Overheads 16600 17100Total 99600 104400Since Memodata was a private company, only50% of its request could be funded by the EC. So the total of the request was:
AVI MEMTotal 99600 52200
Notes: 1) validation is not included in this table. This has be done by Xerox and Bertin globallyfor several languages. 2) These amounts constitued a previsional budget corresponding to some
20 000 synsets.
47. Demo of Tools (1) Relevant Concept Field
(2) Similarity of Words
(3) Chinese Chunk Extractor
(4) Smart Word finder
48. Overview of HowNet Components of HowNet
Nature of HowNet
Theory of HowNet
Guidelines of Design
Sememes and Relations
49. ??????? HowNet Browser (??)
Relevant concept field (??) – “?”
Similarity computing (??) – ?????? (??“ontology”)
Prof. Huang’s comment on HowNet (??)
U32?:Taxonomy Event Relation & Role Shifting
Taxonomy Typical Actors
Papers (Applications about HowNet)