1 / 10

Random Variables

Discrete Random Variables: a random variable that can assume only a countable number of values. The value of a discrete random variable comes from counting. Continuous Random Variable:

Download Presentation

Random Variables

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Discrete Random Variables: a random variable that can assume only a countable number of values. The value of a discrete random variable comes from counting. Continuous Random Variable: random variables that can assume any value on a continuum. Measurement is required to determine the value for a continuous random variable. Random Variables

  2. Continuous Probability Distributions The probability distribution of a continuous random variable is represented by a probability density function that defines a curve. The area under the curve corresponds to the probabilities for the random variable.

  3. Continuous Probability Distributions • The Continuous Uniform Distribution • A probability distribution in which the probability of a value occurring between two points, a and b, is the same as the probability between any other two points, c and d, given that the distance between a and b is equal to the distance between c and d. f (x) = 1 / ( b - a ) if a< x <b

  4. The Uniform Probability Density Function • Mean and standard deviation of the uniform probability density function:

  5. EXAMPLE Suppose the research department of a steel manufacturer believes that one of the company’s rolling machines is producing sheets of steel of varying thickness. The thickness is a uniform random variable with values between 150 and 200 millimeters. Any sheet less than 160 millimeters must be scrapped because they are unacceptable to buyers.

  6. EXAMPLE • Calculate the mean and standard deviation of x, the thickness of the sheets produced by this machine. Then graph the probability distribution and show the mean on the horizontal axis. • Calculate the fraction of steel sheets produced by this machine that have to be scrapped.

  7. Continuous Probability Distributions • The Normal Distribution • A bell-shaped, continuous distribution with the following properties: • It is unimodal; the normal distribution peaks at a single value. • It is symmetrical; 50% of the area under the curve lies left of the center and 50% lies right of the center. • The mean, mode, and median are equal. • It is asymptotic; the normal distribution approaches the horizontal axis on each side of the mean toward +

  8. The Normal Distribution The Normal Distribution is defined by two parameters:

  9. The Standard Normal Distribution The Standard Normal Distribution is a continuous, symmetrical, bell-shaped distribution that has a mean of 0 and a standard deviation of 1.

  10. The Z Score The Z Score is the number of standard deviations between the mean and the point X.

More Related