240 likes | 504 Views
Progressive Meshes. Hugues Hoppe Computer Graphics Group Microsoft Research SIGGRAPH 96. S. Complex meshes. 43,000 faces. lots of faces!. Challenges: - rendering - storage - transmission. Contributions. New mesh simplification procedure preserve appearance (colors, normals, …)
E N D
Progressive Meshes Hugues Hoppe Computer Graphics Group Microsoft Research SIGGRAPH 96 S
Complex meshes 43,000 faces lots of faces! Challenges: - rendering - storage - transmission
Contributions • New mesh simplification procedure • preserve appearance (colors, normals, …) • New representation: progressive mesh • lossless • continuous-resolution • efficient • progressive
Traditional mesh representation mesh M V F Vertex 1 x1 y1 z1 Vertex 2 x2 y2 z2 … Face 1 2 3 Face 3 2 4 Face 4 2 7 … (appearance attributes:normals, colors, textures, ...)
PreviousWork Mesh simplification 13,000 [Schroeder-etal92] [Turk92] [Hoppe-etal93] [Rossignac-Borrel93] [Cohen-etal96] ... 1,000 200 ?
PreviousWork Level-of-detail (LOD) [Clark76] [Funkhouser93] distance from viewer? close far 10,000 2,000 1,000 500 250 Concern: transitions may “pop”® would like smooth LOD
(optimization) New mesh simplification procedure • Idea: apply sequence of edge collapses: ecol(vs ,vt , vs) ’ vt vr vl vl vr vs ’ vs S
^ M=Mn Simplification process 13,546 500 152 150 M175 M1 M0 ecoln-1 ecol0 ecoli
Invertible! Vertex split transformation: attributes vspl(vs ,vl ,vr , vs,vt,…) ’ ’ ’ vt vl vr vl vr vs vs ’ S
150 152 500 13,546 ^ ^ M0 M1 M175 Mn=M M0 Mn=M vspl0 … vspli … … vspli … vspln-1 vspl0 vspln-1 progressive mesh (PM) representation Reconstruction process V S
3,478 ^ M0 Mn=M Mi 200K faces/sec! 100K faces/sec! (166 MHz Pentium) Application: Continuous-resolution LOD From PM, extract Mi of any desired complexity. 3,478 faces? M0 vspl0 vspl1 vspli-1 vspln-1 Mi V
Mf-1 Mf-2 v1 v1 v2 v2 ecol ecol v3 v3 v4 v4 ecol v5 v5 v6 v6 v7 Property: Vertex correspondence Mf Mc M0 v1 v1 Mn v2 v2 v3 v3 v4 v5 v6 v7 v8
Application: Smooth transitions Correspondence is a surjection: Mf Mc v1 v1 v2 v2 Mf«c v3 v3 v4 V V F v5 v6 ® can form a smooth visual transition: geomorph v7 v8 V
Application: Mesh compression vspl(vs ,vl ,vr ,vs,vt,…) ’ ’ • Record deltas: • vt - vs • vs - vs • … vt ’ ’ vl vl vr vr vs ’ vs ’ • Encoding of vspl records: • connectivity: ~ good triangle strips • attributes: excellent delta-encoding [Deering95] Space overhead of PM ?!
vspli-1 vspln-1 Mi ^ M (~ progressive JPEG) Application: Progressive transmission Transmit records progressively: time M0 vspl0 vspl1 Receiver displays: M0
Application: Selective refinement vspl0 vspl1 vspli-1 vspln-1 M0 (e.g. view frustum) S
S S points points How to select edge collapses? • Preserve appearance: • geometric shape • scalar fields (e.g. color) • discontinuity curves S
Selecting edge collapses • Greedy algorithm: always collapse edge resulting in smallest DE • Simplification rates: ~ 30 faces/sec • off-line process • could use simpler heuristics
PreviousWork Multiresolution analysis (MRA) [Lounsbery-etal93] [Eck-etal95] [Certain-etal96] base mesh wavelet coefficients (detail) S
Comparison with MRA • Advantages of MRA • encodes geometry & color independently • supports multiresolution editing • Advantages of PM • lossless • more accurate • captures discrete attributes • captures discontinuities
^ M V F M0 Summary PM lossless vspl • single resolution • continuous-resolution • smooth LOD • space-efficient • progressive S V
Demo • 166 MHz Pentium • 3D Labs graphics card (~$250) • Windows 95 + DirectX