1 / 33

Ikaros Bigi, Notre Dame du Lac

WIN ‘05. On the Theoretical Treatment of Semileptonic B Decays. Ikaros Bigi, Notre Dame du Lac. SM with CKM structure has scored novel & quantitatively impressive successes can not count on massive intervention of New Physics in B decays

benson
Download Presentation

Ikaros Bigi, Notre Dame du Lac

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. WIN ‘05 On the Theoretical Treatment of Semileptonic B Decays Ikaros Bigi, Notre Dame du Lac • SM with CKM structure has scored • novel & quantitatively impressive successes • cannot count on massive intervention of New Physics in B decays • need numerical precision in SM/CKM predictions • requiresaccurate & reliablevalues for |V(cb)|,|V(ub)| Can we answer the ~ % level accuracy challenge?

  2. Status ‘04 mb(1 GeV) = (4.61 ± 0.068) GeV 1.5 % mc(1 GeV) = (1.18 ± 0.092) GeV 7.8 % mb(1 GeV) - 0.74 mc(1 GeV) = (3.74 ± 0.017) GeV 0.5 % |V(cb)| = (41.390 ± 0.870)x10-32.1 % vs. |V(us)|KTeV = 0.2252 ± 0.0022 1.1 %

  3. Essential role of O(perator)P(roduct)E(xpansion) e+ e+ q q g g g g q q e- e- s µlmnÚd4xe-iQx<0|{Jmhad (x)Jnhad (0)}T|0> Jmhad Jnhad optical thm Sifi(x)Oi(0) as Q Æ¥ l l n n Sifi(x)Oi(0) as mbÆ¥ b b B B G µlmnÚd4xe-iQx<B|{Jmhad (x)Jnhad (0)}T|B> optical thm

  4. Novel symbiosis between different theoretical technologies for heavy flavour nonperturbative dynamics -- in particular between HQE and LQCD observables = Sici(CKM,mQ,aS) <HQ|Oi|HQ> HQP HQE LQCD • it enhances the power of and confidence in both technologies by • increasing the range of applications & • providing more benchmarks • duality ≠additional ad-hoc assumption • duality violation inGSL(B) < 0.5 %! IB & N.Uraltsev,Int.J.Mod.Phys.A16(01)5201,`Vademecum … ‘ (48 p!)

  5. The Menu I A Case Study in Accuracy: Extracting V(cb), mb etc. II Lessons fromB ÆgX III Lessons forB Æ lnXu IV B ÆtnX, B ÆtnD andNew Physics V CP in t Decays VI Summary

  6. I A Case Study in Accuracy: Extracting V(cb), mb etc. B Æ lnXc • 2 step procedure for quantitative results • express observable in terms of HQPthrough explicit OPE Benson,ibi,Uraltsev Bauer,Ligeti,Luke,Manohar • determine HQP from independentobservable both with commensurate accuracy & reliability! Gambino,Uraltsev Trott; Bauer,Ligeti,Luke,Manohar

  7. 3.1 Master Formulae for SL Width GSL(B) = G0(b) {f(z)[1-(2/3)(aS/p)(g(z)/f(z))+c2aS2+c3aS3+..]¥[1-(mp2(m)-mG2(m) )/2mb2] -2(1-z)4 mG2(m)/mb2 +[d(z)rD3(m)+l(z) rLS3(m)]/ mb3 +O(1/mb4)} G0(b) = GF2mb5(m) |V(cb)|2/192p3 f(z), g(z),d(z),l(z): phase space function of z=mc2/mb2 c2: BLMaS2b0+ estimate for non-BLM, b0= 11NC/3 - 2Nf/3 = 9 c3: BLMaS3b02, [BLM known to all ordersaSnb0n-1] m p2(m)= <B|b(iD)2b|B>|m/2MB kinetic energy mG2(m) = <B|b(i/2)smnGmnb|B>|m/2MB chromomagn. moment rD3(m) = <B|b(-1/2D∑E)b|B>|m/2MB Darwin term rLS3(m)= <B|b(s∑E¥p)b|B>|m/2MB LS term Benson et al., Nucl.Phys.B665(‘03)367

  8. GSL(B Æ lnXc)= F(HQP) ± 1%|pert± 2.4%|hWc± 0.8%|hpc± 1.4%|IC = • F(HQP) ± 3%|th |V(cb)|/0.0417 = (1+dth) x [1+0.30(aS(mb) -0.22)] x [1-0.66x(mb(1 GeV) -4.6 GeV) + 0.39x(mc(1 GeV) -1.15 GeV) + +0.013x(mp2 -0.4 GeV2) + 0.05x(mG2 -0.35 GeV2) + +0.09x(rD3 -0.2 GeV3) + 0.01x(rLS3 +0.15 GeV3)]; dth=± 0.5 %|pert± 1.2%|hWc± 0.4%|hpc± 0.7%|IC

  9. Heavy Quark Parameters need definitions of HQP that can pass muster by quantum field theory! through O(1/mQ3): 6 HQP • 2 different classes of HQP • mb, mc -- external to QCD, i.e. canneverbe calculated by LQCD without experimental input caveat: quark masses depend on renorm. scheme & scale • mp2, mG2, rD3, rLS3, … internal to QCD, i.e. canbe calculated by LQCD without experimental input caveat: mp2 ≠ -l1, mG2 ≠ -l2

  10. U(4S) Æ bb: before 2002 • 4.56 ±0.06 GeV MeYe • mb,kin(1 GeV) = 4.57 ±0.05 GeV Ho • 4.59 ±0.06 GeV BeSi • 4.58 ±0.05 GeV KuSt • <mb,kin(1 GeV)>|bb = 4.57 ±0.08 GeV chromomagnetic moment mG2 mG2 = <HQ|Qi/2smnGmnQ| HQ>/2M(HQ) = (3/2) [M2(VQ) - M2(PQ)] for b = Q:mG2 ª0.35 + 0.03- 0.02 GeV2 kinetic energymp2 mp2 = <HQ|Qp2Q| HQ>/2M(HQ)ª - l1+ 0.18 GeV2to one-loop SV SR:mp2 > mG2; `QCD’ SR:mp2 =0.45 ±0.1GeV2

  11. Extracting Heavy Quark Parameters determine HQP without compromising advantages of OPE • V(cb) & HQP GSL(B Æ lnXc), i.e. integrated spectrum • V(cb) & HQP shape of (El&MX) spectrum • normalizedmomentsshape of spectrum • normalizedmoments HQP Lepton energy and hadronic mass moments: M1(El) = G-1ÚdEl El d G/d El Mn(El) = G-1ÚdEl [El- M1(El)]nd G/d El , n > 1 M1(MX) = G-1ÚdMX2(MX2- MD2)d G/dMX2 Mn(MX) = G-1ÚdMX2(MX2- <MX2>)nd G/dMX2 , n > 1 • aim for overconstraints

  12. short comment on history: • CLEO did lots of pioneering work -- also on moments measured originally 2 lepton energy moments in B Æ lnXc & photon energy moment in B Æ gXcwith severelower cuts on El & Eg. • Analysis by Battaglia et al. on DELPHI data in 2002 was the first to establish the present working paradigm: • measure 3 lepton energy and 3 hadronic mass moments in B Æ lnXc with acceptance over the full range of El.

  13. BABAR DELPHI

  14. excellent description of large set of data points in terms of 6 or even merely 4 parameters: mb, mc,mp2, rD3, (mG2, rLS3) • a priori free fit parameters assume values obeying various theoretical constraints and knowledge! mb(1 GeV) = (4.61 ± 0.068) GeV mb,kin(1 GeV)|bb=4.57±0.08 GeV mc(1 GeV) =(1.18 ± 0.092)GeV mb(1 GeV)-mc(1 GeV)=(3.436±0.032)GeV mb(1 GeV)-mc(1 GeV)|MB-MD=(3.48±0.02± ?) GeV mb(1 GeV) - 0.74mc(1 GeV) =(3.737 ± 0.017) GeV challengeforLQCD! mG2(1 GeV) =(0.267 ± 0.067) GeV2 mG2|HFª0.35 ±0.03 GeV2 mp2(1 GeV) =(0.447 ± 0.053) GeV2mp2|QCDSR=0.45 ±0.1GeV2 rD3(1 GeV) =(0.195 ± 0.029) GeV3 rD3(1 GeV)~ 0.1 GeV3

  15. mb(1 GeV )|B Æ lnXc= 4.61 ± 0.068 GeV BaBar mb(1 GeV)|Hb Æ lnXc= 4.575±0.069±0.043±0.005 GeV DELPHI mb(1 GeV)|U(4S)Æbb =4.57±0.08 GeV mc(1 GeV) )|B Æ lnXc = 1.18 ± 0.092 GeV BaBar mc(1 GeV)|Hb Æ lnXc= 1.144±0.106±0.071±0.020 GeV DELPHI mc(1 GeV) )|cc SR = 1.19 ± 0.11 GeV mc(1 GeV) )|cc SR = 1.30 ± 0.03 GeV mb(1 GeV)-mc(1 GeV )|B Æ lnXc = 3.436±0.032 GeV BaBar mb(1 GeV)-mc(1 GeV )|Hb Æ lnXc= 3.431 ± ? GeV DELPHI mb(1 GeV)-mc(1 GeV)|MB-MD = 3.48±0.02± ? GeV mp2(1 GeV)|B Æ lnXc = 0.447 ± 0.053 GeV2 BaBar mp2(1 GeV)|Hb Æ lnXc= 0.399±0.047±0.039±0.020 GeV2 DELPHI mp2(1 GeV)|QCDSR = 0.45 ±0.1GeV2 mG2(1 GeV)|HF =0.35 ±0.03 GeV2

  16. for Patricia Uraltsev

  17. … CLEO … DELPHI … BABAR ‘04: V(cb)|incl=(41.390 ±0.870) x 10-3=41.390x(1 ±0.021) x 10-3 DELPHI ‘04 preliminary V(cb)|incl=(42.1 ± 1.1) x 10-3 =42.1x(1 ± 0.025) x 10-3 analysis by Bauer et al. yields very similar numbers (though I do not understand their error analysis) Comment: impressive consistency of all measured moments yields best bounds on b Æ c being purely left-handed!

  18. B Æ lnD* • measure rate ofB -> l n D* • extrapolate to zero recoil & extract |V(cb) FD* (0)| • FD* (0)= 1 + O (1/mQ2) +O(as) normalized • holds automatically for mb = mc • expansion in 1/mc! 0.89±0.08[0.05] Uraltsev et al.: O(1/mQ2) FD* (0)= 0.913±0.042 BaBar Book `par ordre de Mufti’ 0.913 +0.024-0.017+0.017-0.0302ndquenched lattice:H,K et al. O(1/mQ3) [~ 0.89 at O(1/mQ2)] use: FD* (0) = 0.90 ± 0.05for convenience • |V(cb)|excl= 0.0416 ¥(1 ± 0.022|exp ± 0.06|theor)

  19. Unorthodoxy: B Æ e/mn D Uraltsev: BPS expansion ifmp2=mG2:s · p|B>=0,r2=3/4 in real QCD:mp2 -mG2 <<mp2,r2 »3/4 expansion inb=[3(r2-3/4)]1/2 = 3 [Sn|t(n)1/2|2]1/2 irreducibledf+(0) ~ exp(-2mc/mhad) ~ few % Program: • extract |V(cb)| from BÆe/mn D • compare with`true’ |V(cb)|from GSL(B) to validate BPS expansion if successful -- see later

  20. on the power of the OPE: rate(HQÆ f) = Si ci(f)<HQ|Q…Q|HQ> once extracted from GSL(B Æ lnXc)can be used in all transitions -- in particular B Æ lnXu, B Æ gXq

  21. II Lessons fromB ÆgX Issue of `biases’ due to experimental cuts • Experimental cuts on energyetc. applied for practical reasons • yet they degrade`hardness’ Q of transition • `exponential’ contributions exp[-cQ/mhad]missed in usual OPE expressions • quite irrelevant for Q >> mhad • yet relevant for Q ~ mhad! Test case: B Æg Xq for B Æg Xq: Q = mb - 2 Ecut e.g.: for Ecut~ 2 GeV, Q ~ 1 GeV !

  22. noted before: usual OPE expression for B Æg Xq somewhat indifferent to impact of experimental cuts • early CLEO analyses showed a systematic shift in values of HQP extracted from B Æg Xq Pilot study (Uraltsev, IB, PL B 579 (‘04) 340) Detailed study Benson,Uraltsev, IB, Nucl.Phys.B710(‘05)371

  23. bias corrections depend on values of HQP for BABAR’s central values of the HQP we get <Eg>|1.8biased=2.305 GeVÆ <Eg>|1.8corr=2.312 GeV <Eg>|1.8BELLE=2.292±0.026±0.034 GeV <Eg>|1.9biased=2.313 GeV Æ <Eg>|1.9corr=2.325 GeV <Eg>|2.0biased=2.321 GeVÆ <Eg>|2.0corr=2.342 GeV <Eg>|2.0CLEO=2.346±0.032±0.011 GeV <Eg>|2.1biased=2.329 GeVÆ <Eg>|2.1corr=2.364 GeV

  24. <(Eg-<Eg>)2>|1.8bias=0.0357 GeV2Æ<(Eg-<Eg>)2>|1.8corr=0.0309 GeV2 <(Eg-<Eg>)2>|1.8BELLE=0.0305±0.0074±0.0063 GeV2 <(Eg-<Eg>)2>|1.9bias=0.0321 GeV2Æ<(Eg-<Eg>)2>|1.9corr=0.0255 GeV2 <(Eg-<Eg>)2>|2.0bias=0.0293 GeV2Æ<(Eg-<Eg>)2>|2.0corr=0.020 GeV2 <(Eg-<Eg>)2>|2.0CLEO=0.0226±0.0066±0.0020 GeV2 <(Eg-<Eg>)2>|2.1bias=0.0271 GeV2Æ<(Eg-<Eg>)2>|2.1corr=0.0145 GeV2

  25. from O. Buchmueller

  26. `defensible’ ? -- `moment’ usual OPE expression OPE with bias correc. `Ecut’

  27. Lessons: • keep the cuts as low as possible • biasin the meas. moments induced by cuts • can be corrected for (within a certain range of cut values) • not a pretext for inflating theor. uncert. • moments meas. as fction of cuts:importantcross check! • Personal plea to BELLE/BABAR: • Please tell us what you measure for • <Eg>, < Eg2- <Eg>2> • with Ecut = 1.8, 1.9, 2.0, 2.1, 2.2 GeV!!

  28. III Lessons forB Æ lnXu no need to `re-invent the wheel’ -- for B Æ lnXu use the same values of the HQP as determined in B Æ lnXc Lepton energy endpoint spectrum ? • model dependent! • can get heavy quark distribution function from B ÆgX • but only to leading order in 1/mb • endpoint spectrum different for SL Bu and Bd decays (WA) Hadronic recoil mass spectrum ! • |V(ub)| within 10 % likely, 5 % possible

  29. IV B ÆtnX, B ÆtnD andNew Physics • analyze B Æ lnD & extract |V(cb)| • validate it with |V(cb)| from B Æ lnX • if successful, measure B Æ tnD - 2nd FF f-can be measured! • compare withSM predictionfor known |V(cb)| • discrepancy could be interpreted in terms of charged Higgs • repeat analysis for B Æ tnX

  30. V CP in t Decays SM forbidden t decays tÆm/e g • Æ 3 l if New Physics in b Æ sss≈ New Physics in tÆmmm thenBR(tÆmmm) ~ 10-8 need to find CP in leptodynamics to complete CP paradigm

  31. CP in t decays • most promising channels: tÆnK p • most sensitive to Higgs dynamics • CP asymmetries possible also in final statedistributions rather than integrated rates • unique opportunity for e+e-Æ t+t- pair producedwith spins aligned: 1 t decays can `tag’ the spin of the other • can probe spin-dependent CP with unpolarized beams! • confidently predicted CP fromknown dynamics: 0.0033 in G(t+ÆnKS p +) vs.G(t-ÆnKS p -) -- due to KS’s preference for antimatter

  32. VI Summary Extracting CKM parameters with accuracy seemingly unrealistic less than 10 years ago -- with detailed & defensible error budgetsfrom theorists! • dV(cb) ~ 2 % now, ~ 1 % soon • dV(ub) ~ 5 % conceivable without newtheoretical breakthrough • Progress based on two key elements: • robusttheory subjected to the challenges of • high qualitydata • precision, i.e. small defensible uncertainties overconstraints

More Related