270 likes | 720 Views
Nanomaterials Approaches to Innovation Francesco Stellacci Department of Materials Science and Engineering, MIT frstella@mit.edu Acknowledgements Graduate Students Osman Bakr (Harvard) Jeffrey Kuna Ozge Akbulut Jin Young Kim (with Prof. Ross) Hyewon Kim Randy Carney
E N D
Nanomaterials Approaches to Innovation Francesco Stellacci Department of Materials Science and Engineering, MIT frstella@mit.edu
Acknowledgements Graduate Students Osman Bakr (Harvard) Jeffrey Kuna Ozge Akbulut Jin Young Kim (with Prof. Ross) Hyewon Kim Randy Carney Eun Seoun Kim (with Prof. Van Vliet) Huijuan Zhang (with Prof. Thong, NUS) Post-Docs Ying Yu Kislon Voitchovsky Jin-Mi Jung Benjamin Wunsch Anirbal Gosh Javier Reguera Xiang Liu Yun Tan Karen Stewart (with Prof. Van Vliet) Alumni: Graduate Students Robert J. Barsotti, Jr. (Arkema. Senior Sci.) Gretchen A. DeVries (Patent Lawyer) Alicia M. Jackson (US Senate, Intern) A. Amy Yu (Samsung, senior scientist) Suelin Chen (Weissleder group ) Sarah Thevenet (Mol. Stamping, Production Eng.) Tan Mau Wu (Patent Lawyer ) Post-Docs Markus Brunnbauer (Infineon, Senior Scientist) Xiaogang “Bruno” Liu (NUS, Assistant Professor) Brenda Long (U. Birgh., post doc) Andrea Centrone (MIT, post doc) Kazuya Nakata (NIAST, Japan, Assistant Professor) Georg Heimel (Free U. Berlin, post doc) Oktay Uzun (Dow Chemicals) Cedric Dubois (Nestle’) Ayush Verma (Novartis’) Collaborators David Nelson, Harvard Ralph Weissleder, MGH Molly Stevens, Imperial C., UK Henry I. Smith, MIT Maurizio Prato, Trieste Enzo di Fabrizio, Catanzaro Marcus Halik, Erlangen U., Germany Anne Mayes, MIT Sharon Glotzer, U. Mich Joerg Lahan, U. Mich. Nicola Marzari, MIT Darrell Irvine, MIT Krystyn Van Vliet, MIT Robert Cohen, MIT Carl Thompson, MIT John Thong, NUS Hee-Tae Jung, KAIST Yann Astier, U Lisbon, Portugal Xiaogang Liu, NUS, Singapore Giulia Rusciano (CNR, Italy) Matthias Schneider (BU/Munchen) Alfredo Alexander-Katz (MIT) NSF: CAREER NIH TPEN Program Deshpande Center CMSE-MRSEC DMR 02-13282 MARCO 3M Non Tenured Faculty Award 3M Innovation Award DuPont Young Professor Award Packard Foundation Award Singapore MIT Alliance 2 MITEI, ENI Tata Chemicals
20 mm The Supramolecular NanoMaterials Group Metal Nanoparticles Nano Stamping Supramolecular Materials Science Jackson, Nat. Mat., 330, 2004; Akthakul, Adv. Mat., 532, 2005 Jackson, JACS., 11135, 2006; DeVries, Science, 358, 2007 Centrone, Small, 814, 2007, Uzun, Chem. Comm.,196, 2008 Sigh, Glotzer, PRL, 226106, 2007, Carney, JACS, 798, 2008 Hu, J. Phys. Chem C, 6279, 2008 DeVries, Adv. Mat. on line; Nakata, Adv. Mat on line Verma, Nat. Mat. 588, 2008 Centrone, PNAS, 9886, 2008 Yu, J. Scn. Prob. Micr. 24, 2009 Kuna, N. Mat., 837, 2009 NanoMaterials Patterning Yu, Nano Lett., 1061, 2005 Yu, JACS, 16774, 2005 Yu, J. Mat. Chem., 2868, 2006 Yu, Adv. Mat., 4338 2007 Thevenet, Adv. Mat., 4333, 2007 Akbulut, Nano Lett., 3493, 2007 Surfaces Lithography Nanotubes & Nanowires Interfaces and SAMs Halik. Nature,963, 2004 Dubois, J. Phys. Chem. C 7431, 2008 Long, B.; J. Exp. Nanosci., 53, 2008 Voitchkovsky.; Nat. Nano., in review Barsotti, Langmuir,, 4795, 2004 Barsotti, J. Mat. Chem., 962, 2006 Zhang H., Small, accepted Long, Chem Comm. 2788, 2008 Liu, Yuan, Kong, Stellacci Nat. Nano. 332, 2008
Multiple DNA Printing DNA Solution
Company 2006: Molecular Stamping founded by F. Stellacci (MIT) and F. della Porta (Silicon Valley). Exclusive license from MIT for Supramolecular Nanostamping (SuNS) enabling a drastic reduction in the cost of microarray fabrication and higher platform flexibility. Molecular Stamping has two facilities in Italy: the Operations unit in Trento and the Service Analysis lab located in Lodi (Milan) 2007: 12 scientists hired, new patents applied, a production method developed 2008: installed capacity 2500 arrays/year and volume ramp started Molecular Stamping 7
Shareholders • TWOF, Holding http://www.twof.com • Innogest (VC, Italy) • Transfiduciare (Private Banking, Switzerland) • Private (mostly Private Bankers, Switzerland) • MIT • FBK, Fondazione Bruno Kessler (Research institute) • http://www.fbk.eu • PTP, Parco Tecnologico Padano (Incubator) • http://www.tecnoparco.org Molecular Stamping 8
Technology A DNA microarray is a collection of microscopic spots containing single stranded DNA attached to a solid surface such as glass, and is typically used to simultaneously monitor a large amount of genomic material. Molecular Stamping 9
The market is currently dominated by suppliers of in situ synthesized microarrays, each one using a different manufacturing technique: Photolithography /masks (Affymetrix) Maskless Photolithography (Roche/Nimblegen) Ink-jet printing (Agilent) BeadArray technology (Illumina) MicroElectrodes (Combimatrix) At MS we leverage the naturally occurring biochemical synthesis of DNA to generate DNA arrays at low cost and with high degree of flexibility. Technology Molecular Stamping 10
Technical Advantages • SIMPLE: small number of process steps. • FLEXIBLE: SuNSTM process does not pose practical limits on the length and direction of DNA probes. • VERSATILE: stamping can be used to print biological molecules other than DNA: RNA, antibodies, proteins, small molecules. • INEXPENSIVE: use of naturally occurring DNA replication dramatically reduce fabrication costs. Molecular Stamping
Replication 1 TEMPLATE MICROARRAY TEMPLATE MICROARRAY Technology • Current manufacturing process is composed by 3 general steps: • Replication: • Single-stranded DNA (ssDNA) probes on the template microarray are enzymatically replicated, forming double-stranded DNA (dsDNA); these new strands contain groups that can form strong bonds with a new surface. Molecular Stamping 12
TEMPLATE MICROARRAY Stamping 2 TEMPLATE MICROARRAY MS MICROARRAY Technology • 2. Stamping: • The template microarray is brought into conformal contact with the microarray surface, allowing covalent bonds to form between the newly synthesized DNA and the new surface. Molecular Stamping 13
TEMPLATE MICROARRAY TEMPLATE MICROARRAY Separation MS MICROARRAY MS MICROARRAY Technology • 3. Separation: • The two surfaces are separated; the “stamped” surface is now a Molecular • Stamping Microarray. 3 Molecular Stamping 14
Replication 1 TEMPLATE MICROARRAY TEMPLATE MICROARRAY 3 Separation MS MICROARRAY MS MICROARRAY Technology • Process cycle: TEMPLATE MICROARRAY 2 Stamping Molecular Stamping 15
Technology M M S S The microarray obtained is the mirror image of the template TEMPLATE MS MICROARRAY Molecular Stamping 16
Operations Molecular Stamping 120sqm Clean room class 1000 Chemical Lab Bio Lab Service Lab 17
Clean Room Clean room north view Clean room south view Molecular Stamping
Product-1 Custom Microarray via SuNS TM Taking advantage of the inherent ability of DNA to self-replicate, a custom microarray is generated from a "template" microarray Through a Replication contact-dehybridization cycle. Molecular Stamping
Services Molecular Stamping Array spotting service RNA-DNA quality control Microarray analysis for both gene expression and genotyping 20
Contact info@twof.com Giovanni de Ceglia Email: gdeceglia@twof.com Giorgia Faes Email: gfaes@twof.com Molecular Stamping s.r.l Via Sommarive, 18 - Povo (TN), 38050 – Italy http://www.molecularstamping.com/ Molecular Stamping
20 mm The Supramolecular NanoMaterials Group Metal Nanoparticles Nano Stamping Supramolecular Materials Science Jackson, Nat. Mat., 330, 2004; Akthakul, Adv. Mat., 532, 2005 Jackson, JACS., 11135, 2006; DeVries, Science, 358, 2007 Centrone, Small, 814, 2007, Uzun, Chem. Comm.,196, 2008 Sigh, Glotzer, PRL, 226106, 2007, Carney, JACS, 798, 2008 Hu, J. Phys. Chem C, 6279, 2008 DeVries, Adv. Mat. on line; Nakata, Adv. Mat on line Verma, Nat. Mat. 588, 2008 Centrone, PNAS, 9886, 2008 Yu, J. Scn. Prob. Micr. 24, 2009 Kuna, N. Mat., 837, 2009 NanoMaterials Patterning Yu, Nano Lett., 1061, 2005 Yu, JACS, 16774, 2005 Yu, J. Mat. Chem., 2868, 2006 Yu, Adv. Mat., 4338 2007 Thevenet, Adv. Mat., 4333, 2007 Akbulut, Nano Lett., 3493, 2007 Surfaces Lithography Nanotubes & Nanowires Interfaces and SAMs Halik. Nature,963, 2004 Dubois, J. Phys. Chem. C 7431, 2008 Long, B.; J. Exp. Nanosci., 53, 2008 Voitchkovsky.; Nat. Nano., in review Barsotti, Langmuir,, 4795, 2004 Barsotti, J. Mat. Chem., 962, 2006 Zhang H., Small, accepted Long, Chem Comm. 2788, 2008 Liu, Yuan, Kong, Stellacci Nat. Nano. 332, 2008
20 mm 500 nm 27 cm 50 mm 2 mm Superhydrophilic Paper potassium sulfate potassium persulfate manganese sulfate monohydrate J. Yuan, K. Laubernds, J. Villegas, S. Gomez, S. L. Suib, Adv. Mater. 16, 1729 (2004)
A B A/R: 172O/172O 2 mm Contact angle : Contact angles (o) Contact angle hysteresis : 10 mm 3 nm Contact angle hysteresis (o) Number of surface coatings C C O Mn Intensity (a.u.) Mn D Cu Mn Si Cu 30 nm E 0 2 4 6 8 10 Energy (eV) Superhydrophobic Paper Silane coating (230 oC) After oven baking at 2300 C in the presence of polydimethylsiloxane (PDMS) the paper becomes superhydrophobic Heating (390 oC) Contact Angle 1720
A Weight gain (%) B C Toluene Gasoline Motor oil Cyclohexane Petroleum ether 1,2-Dichlorobenzene Sunoco gasoline (regular 87) labeled with Oil Blue 35 Capillarity + Superhydrophobicity = … + = Selective Super-Absorbance
Oil-Uptake Capacity Yuan, Liu, Akbulut, Suib, Kong, Stellacci, Nature Nano. 332, 2008