480 likes | 619 Views
Complex Numbers. XII – STANDARD MATHEMATICS. PREPARED BY: R.RAJENDRAN. M.A., M . Sc., M. Ed., K.C.SANKARALINGA NADAR HR. SEC. SCHOOL, CHENNAI-21. If n is a positive integer, prove that. If a = cos 2 + isin 2, b = cos2 + isin 2, c = cos 2 + isin 2. Prove that (i).
E N D
Complex Numbers XII – STANDARD MATHEMATICS PREPARED BY: R.RAJENDRAN. M.A., M. Sc., M. Ed., K.C.SANKARALINGA NADAR HR. SEC. SCHOOL, CHENNAI-21
If a = cos 2 + isin 2, b = cos2 + isin 2, c = cos 2 + isin 2. Prove that (i) a = cos 2 + isin 2 b = cos 2 + isin 2 c = cos 2 + isin 2 abc = (cos 2 + isin 2 )(cos 2 + isin 2) (cos 2 + isin 2) = cos (2 + 2 + 2) + isin (2 + 2 + 2)
= cos ( + + ) + isin ( + + ) ……..(1) = cos ( + + ) – i sin ( + + ) …….(2) adding (1) and (2) we get
If a = cos 2 + isin 2, b = cos2 + isin 2, c = cos 2 + isin 2. Prove that (ii) = (cos 2 + isin 2 )(cos 2 + isin 2)(cos 2 + isin 2)– 1 = (cos 2 + isin 2 )(cos 2 + isin 2)(cos 2 – isin 2) = (cos 2 + isin 2 )(cos 2 + isin 2)(cos (–2) + isin (–2)) = cos(2 + 2 – 2) + isin(2 + 2 – 2) = cos 2( + – ) + isin 2( + – )………….(1)
= [cos 2( + – ) + i sin 2( + – )]-1 = cos 2( + – ) – i sin 2( + – )………(2) Adding (1) and (2), we get,
Simplify: (cos + isin )0 = 1
If cos + cos + cos = 0 = sin + sin + sin : prove that(i) cos 3 + cos 3 + cos 3 = 3cos( + + )(ii) sin 3 + sin 3 + sin 3 = 3sin( + + ) Given: cos + cos + cos = 0 and sin + sin + sin = 0 (cos + cos + cos ) + i(sin + sin + sin ) = 0 (cos + isin )(cos + isin )(cos + isin ) = 0 Let a = cos + isin b = cos + isin c = cos + isin
If a + b + c = 0, then a3 + b3 + c3 = 3abc (cos + isin )3 + (cos + isin )3 + (cos + isin )3 = 3(cos + isin )(cos + isin )(cos + isin ) (cos 3 + isin 3) + (cos 3 + isin 3) + (cos 3 + isin 3) = 3[cos ( + + ) + isin ( + + )] (cos 3 + cos 3 + cos 3) + i(sin 3 + sin 3 + sin 3) = 3cos ( + + ) + 3isin ( + + ) Equating real and imaginary parts cos 3 + cos 3 + cos 3 = 3cos ( + + ) sin 3 + sin 3 + sin 3 = 3sin ( + + )
If n is a positive integer, prove that(i) (1 + i)n + (1 – i)n = Let 1 + i = r(cos + isin )
Substituting i = - i Adding (1) and (2), we get
If n is a positive integer, prove that(ii) (3 + i)n + (3 – i)n = Let 3 + i = r(cos + isin )
Substituting i = –i Adding (1) and (2), we get
If n is a positive integer, prove that(1 + cos + isin )n + (1 + cos - isin )n (1 + cos + isin )n + (1 + cos - isin )n
If and are the roots of x2 – 2x + 4 = 0 prove that n – n = i2n+1 sin (n/3) and deduce 9 – 9 x2 – 2x + 4 = 0 a = 1, b = –2, c = 4 The two roots are
Substituting i = –i we get Subtracting (2) from (1) we get
If n = 9 9 – 9
If x + 1/x = 2cos prove that (i)xn + 1/xn = 2cos n (ii) xn – 1/xn = 2isin n
If x + 1/x = 2cos, y + 1/y = 2cos, prove that one of the values of
Solve: x8 + x5 – x3 – 1 = 0 x8 + x5 – x3 – 1 = 0 x5(x3 + 1) – (x3 + 1) = 0 (x3 + 1)(x5 – 1) = 0 x3 + 1 = 0, x5 – 1 = 0 Case (1) x3 + 1 = 0 x3 = – 1 = cos + isin = cos(2k + ) + isin(2k + ) x = {cos(2k + ) + isin(2k + )}1/3
The three values are Case (2) x5 – 1 = 0 x5 = 1 = cos 0 + isin 0 = cos(2k) + isin(2k) x = {cos(2k) + isin(2k)}1/5
Solve: x7 + x4 + x3 + 1 = 0 x7 + x4 + x3 + 1 = 0 x4(x3 + 1) + (x3 + 1) = 0 (x3 + 1)(x4 + 1) = 0 x3 + 1 = 0, x4 + 1 = 0 Case (1) x3 + 1 = 0 x3 = – 1 = cos + isin = cos(2k + ) + isin(2k + ) x = {cos(2k + ) + isin(2k + )}1/3
The three values are Case (2) x4 + 1 = 0 x4 = – 1 = cos + isin = cos(2k + ) + isin(2k + ) x = {cos(2k + ) + isin(2k + )}1/4
Find all the values of (1 + i)1/4 Let 1 + i = r(cos + isin )
Find all the values of And hence prove that the product of the values is 1 Since sin is – ve and cos is +ve lies in the fourth quadrant
Their product = = 1
If and are the roots of x2 – 2px + (p2 + q2) = 0 and tan = q/ y+p prove that x2 – 2px + (p2 + q2) = 0 a = 1, b = –2p, c = p2 + q2 The two roots are
P represents the variable complex number z, find the locus of P if Let z = x + iy be the variable complex number
x(x + 1) + y(y + 1) = x2 + (y + 1)2 x2 + x + y2 + y = x2 + y2 + 2y + 1 x + y = 2y + 1 x – 2y + y – 1 = 0 x – y – 1 = 0 The locus of P is x – y – 1 = 0
Find the square root of – 8 – 6i. Let square root of – 8 – 6i be x + iy – 8 – 6i = (x + iy)2 = x2 + 2ixy + i2y2 = x2 + 2ixy – y2 – 8 – 6i = x2 – y2 + 2ixy Equating the real and imaginary parts x2 – y2 = – 8 ……..(1) 2xy = –6 ……..(2) xy = –3 y = –3/x Sub y = –3/x in (1)
x4 – 9 = – 8x x4 + 8x2 – 9 = 0 x4 + 9x2 – x2 – 9 = 0 x2(x2 + 9) – 1(x2 + 9) = 0 (x2 + 9)(x2 – 1) = 0 x2 = –9, 1 x = ±3i, ±1 Since is real x = ±1 If x = 1, then y = –3 If x = –1, then y = 3 The square root = 1 – 3i and –1 + 3i