1 / 8

Example of Branch-and-Bound

6. Example of Branch-and-Bound. x 1 + x 2 = 6. 5. Max Z = 5x 1 + 8x 2 s.t. x 1 + x 2  6 5x 1 + 9x 2  45 x 1 , x 2 ≥ 0 integer. 4. (2.25, 3.75). 3. Z=41.25. 2. 5x 1 + 9x 2 = 45. 1. Z=20. 0. 7. 8. 1. 2. 3. 4. 5. 6. Branching step.

bernie
Download Presentation

Example of Branch-and-Bound

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6 Example of Branch-and-Bound x1 + x2= 6 5 Max Z = 5x1 + 8x2 s.t. x1 + x2 6 5x1 + 9x2  45 x1 , x2≥ 0 integer 4 (2.25, 3.75) 3 Z=41.25 2 5x1 + 9x2= 45 1 Z=20 0 7 8 1 2 3 4 5 6

  2. Branching step • Choose a variable that is fractional in the optimal solution to the LP-relaxation – say, x2 . Observe that every feasible IP point must have either x2  3 or x2 ≥ 4 . • With this in mind, branch on the variable x2to create the following two subproblems: Subproblem 1 Subproblem 2 Max Z = 5x1 + 8x2 Max Z = 5x1 + 8x2 s.t. x1 + x2 6 s.t. x1 + x2 6 5x1 + 9x2  45 5x1 + 9x2  45 x2  3 x2 ≥ 4 x1 , x2≥ 0 x1 , x2≥ 0 • Solve both subproblems (note that the original optimal solution (2.25, 3.75) can’t recur)

  3. Branching step (graphically) Z=41 5 Subproblem 1: Opt. solution (3,3) with value 39 Subproblem 2: Opt. solution (1.8,4) with value 41 Subproblem 2 4 (1.8, 4) 3 (3, 3) 2 Subproblem 1 1 Z=39 Z=20 0 7 8 1 2 3 4 5 6

  4. Solution tree S1: x2 3 (3, 3) Z=39 int. All (2.25, 3.75) Z=41.25 S2: x2≥ 4 (1.8, 4) Z=41 For each subproblem, we record • the restriction that creates the subproblem • the optimal LP solution • the LP optimum value The optimal solution for Subproblem 1 is integral: (3, 3). • If further branching on a subproblem will yield no useful information, then we can fathom (dismiss) the subproblem. In our case, we can fathom Subproblem 1 because its solution is integral. • The best integer solution found so far is stored as incumbent. The value of the incumbent is denoted by Z*. In our case, the first incumbent is (3, 3),and Z*=39. • Z* is a lower bound for OPT(IP): OPT(IP) ≥ Z* . In our case, OPT(IP) ≥ 39. The upper bound is 41: OPT(IP)  41.

  5. Z=20 Next branching step (graphically) 5 (1, 4.44) Subpr. 4 - Fathom Subproblem 1. - Branch Subproblem 2 on x1 : Subproblem 3: New restriction is x1 1. Opt. solution (1, 4.44) with value 40.55 Subproblem 4: New restriction is x1≥ 2. The subproblem is infeasible Subpr. 3 4 3 Z=40.55 2 1 0 7 8 1 2 3 4 5 6

  6. Solution tree (cont.) S1: x2 3 (3, 3) Z=39 int. All (2.25, 3.75) Z=41.25 S3: x1 1 (1, 4.44) Z=40.55 • If a subproblem is infeasible, then it is fathomed. In our case, Subproblem 4 is infeasible; fathom it. • The upper bound for OPT(IP) is updated: 39OPT(IP)  40.55 . • Next branch Subproblem 3 on x2 . (Note that the branching variable might recur). S2: x2≥ 4 (1.8, 4) Z=41 S4: x1≥ 2 infeasible

  7. Z=20 Next branching step (graphically) (0, 5) 5 Branch Subproblem 3 on x2 : Subproblem 5: New restriction is x2 4. Feasible region: the segment joining (0,4) and (1,4) Opt. solution (1, 4) with value 37 Subproblem 6: New restriction is x2≥ 5. Feasible region is just one point: (0, 5) Opt. solution (0, 5) with value 40 4 (1, 4) 3 2 1 0 7 8 1 2 3 4 5 6

  8. Solution tree (final) S1: x2 3 (3, 3) Z=39 int. S5: x2 4 (1, 4) Z=37 int. All (2.25, 3.75) Z=41.25 S3: x1 1 (1, 4.44) Z=40.55 • If the optimal value of a subproblem is  Z*, then it is fathomed. • In our case, Subproblem 5 is fathomed because 37  39 = Z*. • If a subproblem has integral optimal solution x*, and its value > Z*, then x* replaces the current incumbent. • In our case, Subproblem 5 has integral optimal solution, and its value 40>39=Z*. Thus, (0,5) is the new incumbent, and new Z*=40. • If there are no unfathomed subproblems left, then the current incumbent is an optimal solution for (IP). • In our case, (0, 5) is an optimal solution with optimal value 40. S2: x2≥ 4 (1.8, 4) Z=41 S6: x2≥ 5 (0, 5) Z=40 int. S4: x1≥ 2 infeasible

More Related