1 / 41

Borexino: статус и перспективы

Borexino: статус и перспективы. Олег Смирнов ( ЛЯП ОИЯИ ). Марковские чтения. 13 Мая , 2011. БОРЕКСИНО : детектор. 3 00 т жидкого органического сцинтиллятора PC + PPO(1.5 г / л ) регистрация ( ν ,e)- рассеяния с порогом 220 кэВ. 13.7m. 18m. - Borexino goal, 5%. Borexino.

Download Presentation

Borexino: статус и перспективы

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Borexino:статус и перспективы Олег Смирнов (ЛЯП ОИЯИ) Марковские чтения. 13 Мая, 2011

  2. БОРЕКСИНО: детектор • 300 т жидкогоорганического сцинтиллятора • PC + PPO(1.5 г/л) • регистрация (ν,e)-рассеянияс порогом 220 кэВ 13.7m 18m

  3. - Borexino goal, 5% Borexino 50 соб/день/100 тонн (упругое рассеяние νeи vμна e-) Низкая энергиянет Черенковского изл.нет чувствительности к направлению Нет других метоктребуется чрезвычайно чистый сцинтиллятор

  4. “Graded shielding” (слоистая защита) Космические мюоны (подземная лабораторияLNGS: 3200 м.в.э.) Чистота используемых материалов Нейтроны и внешние гамма (слой сверхчистой воды, 2.15 м, 2400 тонн) γ от конструкционных материалов (PC буфер, 700 тонн, 2.5 м) γот конструкционных материалов (внешний слой сцинтиллятора, 1.25 мили 200 т) Доверительный объем (3 м, 100 т) Требуется реконструкция координат

  5. Чистота жидкого сцинтиллятора в Borexino:

  6. Наблюдение геонейтрино • геонейтрино- антинейтрино от β- распадов долгоживущих изотопов (уран-238 , торий-232 и др.), присутствующих в коре и мантии Земли, ожидамый поток нейтрино на поверхности Земли ~106 с-1см-2. • Полный тепловой поток от Земли составляет 30-45 ТВт (по результатам измерений). Считается, что основной вклад в тепло Земли дают именно распады радиоактивных элементов. • Радиогенное тепло связано с количеством антинейтрино. Общепринятые модели (основанные на изучении состава метеоритов и измерении состава земной коры) предсказывают радиогенный вклад в полное тепло Земли около 19 ТВт (сопоставимо с годовым производством энергии человечеством). • Высказывалост также предположение о существовании в центре Земли естественного ядерного реактора с мощностью 3-6 TВт. Такой реактор обеспечивал бы энергией источник магнитного поля Земли, давал недостающее тепло, и объяснял “высокое” отношение потоков 3He/4He у земли. • Детектор Borexino с достоверностью 99,997% зарегистрировал геонейтрино (общим числом около 10 событий). Характеристики нейтринного сигнала исключают наличие в ядре Земли природного ядерного реактора мощностью более 3 ТВт с достоверностью 90%. Естественная радиоактивность Земли : открытые вопросы Радиогенный вклад в полное тепло? Что скрыто в ядре (геореактор, 40K)? Совместима ли стандартная геохимическая модель (BSE) с геонейтринными измерениями? Концентрация U/Th в коре? Концентрация U/Th в мантии?

  7. История G. Marx, N. Menyard Mitteilungen der Sternwarte, Budapest, 48 (1960) Первая оценка потоков геонейтрино от U,Th и K. М.А.Марков “Нейтрино”, М., Наука, 1964: Впервые предложил использовать реакцию обратного бета- распада для регистрации геонейтрино. “В далекой перспективе может быть целесообразен эксперимент, уточняющий верхнюю границу антинейтринной активности Земли. Это, видимо, единственная возможность получения соответствующей информации о составе вещества в глубинных слоях Земли.”

  8. Два детектора чувствительны к геонейтрино Borexino: 300 т ЖС (3500 м.в.э.) KamLAND: 1000 тЖС (2700 м.в.э.) ЖС детекторы большого под землей

  9. Источники фона 1)Реакторные антинейтрино(81% полного потока нейтрино в геонейтринном окнеKamLAND [0.9-2.6 MeV] и только ~36% дляBorexino): отношение Geo/Reactor 0.23 для KL vs 1.8 дляBorexino; 2)Космические мюоныкосмогенные (βn)-изотопы (в LNGS мюонный поток в 7 раз меньше, чем вKamioka) и др. 3)Внутренняя радиоактивность ЖС: случайные совпадения, (αn) реакции (в Borexinoчистота сцинтиллятора на 3-4 порядка лучше; KamLANDпытается очистить ЖС – фактор 20 по (αn) уже достигнут);

  10. Фондля двух ЖС детекторов

  11. Borexino - 2010 Unbinned max. likelihood fit of data 68% (99.73%) Гипотеза отсутствия осцилляций для реакторных антинейтрино на базе 1000 км отвергается с у.д. 99.60% Signal evidence at 4.2s Присутствие геонейтринного сигнала подтверждено на уровне 99.997% отношение U/Th фиксировано (3.9) G. Bellini et al., PLB687 (2010) 299-304.

  12. Сравнение результатовс моделью Fully radiogenic model:Полностью радиогенное происхождение тепла – максимальный поток нейтрино K/U фиксирован на значении для Земли, Th/U – на хондритовом значении (совместимом с Земным). Распространенность элементов пропорционально увеличена, чтобы обеспечить полный поток в 40 TВт. Minimal radiogenic model:Принимаются в расчет только вклады от коры и верхней мантии (т.е. там где концентрация U и Thдостаточно хорошо изучена), вклады от остальных областей обнуляются – минимальный поток нейтрино fully radiogenic model minimal radiogenic model

  13. Есть ли геореактор в центе Земли? • Borexino установил верхний предел на мощность геореактра в предположении геонейтриноого спектра от ядерного реактора с композицией 235U : 238U 0.75 : 0.25: Pgeo<3 TW at 95% C.L. сравнивая число ожидаемых (reactors + geo-reactor ифон) и наблюдаемых событий measured в реакторном окне энергий. • KamLAND Pgeo<6.2 TW at 90% C.L. • Независимый анализ E.Lisi et al. (hep-ph/1006.1113) 95% C.L.:

  14. Есть ли электронные антинейтрино от Солнца? Верхние пределы на неизвестные потоки антинейтрино: 1 – Borexino 2 – SuperKamiokaNDE 3 – SNO (для установления пределов исп. мин.радиогенная модель) G.Bellini et al., Borexino collaboration, Physics Letters B 696 (2011) 191–196 “Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS”

  15. Отбор данных

  16. Экспериментальный спектр Борексино

  17. Первые результаты Борексино“First real time detection of 7Be solar neutrinos by Borexino”Physics Letters B 658 (2008) 101–108 Гипотеза отсутствия 7Be нейтрино не согласуется с данными на уровне 5.3σ

  18. “Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data” PRL 101, 091302 (2008). 49±3stat±4syst cpd/100 t Fit to the spectrum with a-subtraction gives consistent results Main source of systematic uncertainty in this measurent is error in FV definition (significantly reduced after position reconstruction code tuning using calibration data).

  19. Магнитный момент нейтрино С теоретической точки зрения магнитный момент безмассового дираковского нейтрино должен равняться нулю точно так же, как и м.м. майорановского нейтрино, массивного или безмассового. Массивное дираковское нейтрино должно обладать небольшим м.м.: m.m. can be searched for by studying the deviations from the weak shape “плоское” 1/T

  20. Предел на эффективный момент солнечных нейтрино • на 192 днях статистики получен новый предел на м.м. солнечных нейтрино: µeff<5.4·10-11 µB 90% у.д. • Полученный предел не зависит ни от точности определения активного объема сцинтиллятора, ни от параметров осцилляций, ни от абсолютной величины потока солнечных нейтрино, так как результат определяется исключительно формой спектра. • Лучший предел предел для м.м. электронного антинейтрино получен в измерениях с 1.5 кг Ge детектором на Калининской АЭС, в эксперименте GEMMA (arXiv:0906.1926): µ<3.2·10-11 µB • Для флэйворных компонент можно записать [D.Montanino et al. PRD 77, 093011 (2008)]: где Pee- вероятность выживания электронных нейтрино при E=0.863 МэВ, sin2θ23=0.5+0.07-0.06

  21. Новые пределы на м.м.μиτнейтрино • Существующие пределы на м.м.: • μe < 3.2×10-11 μB by GEMMA (elastic scattering) • μμ < 68×10-11 μB by LSND (elastic scattering) • μτ < 39000×10-11 μB by DONUT (elastic scattering) Используя ограничения на м.м.μνe из из эксперимента Gemma:

  22. Измерение потока 8B нейтрино Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector Borexino coll. Phys.Rev.D82 (2010) 033006 E>3 MeV:0.22±0.04(stat)±0.01(syst) cpd/100 t E>5 MeV:0.13±0.02(stat)±0.01(syst) cpd/100 t Борексино – первый жидкосцинтилляционный детектор, чувствительный к борным нейтрино!

  23. “Precision measurement of the 7Be solar neutrino interaction rate in Borexino” arXiv:1104.1816v1 [hep-ex] 10 Apr 2011 46±1.5(stat)+1.6-1.5(syst) cpd/100t 740.66 дней живого временеи

  24. Сравнение с теорией Солнечная модель (High Z)в отсутствие осцилляций: 74±5 cpd/100 t φ(7Be) = (5.00±0.35)109 см-2с-1. В сценарии МСВ-LMA:47.3 ± 3.4 cpd/100 t Соответствующий наблюдаемый поток при этом φ(7Be) = (4.87 ± 0.24)109 см-2с-1(f(7Be) = 1.008+0.003-0.016) Гипотеза отсутствия осцилляций (Pee=1) отвергается на у.д. 4.9 σ В предположении ограничений на светимость солнца получены потоки: φ(pp)=(6.02 + 0.02– 0.09) 1010 см-2с-1 (f(pp) = 0.97±0.05) и φ(CNO)<2.3109см-2с-1 (95% у.д.)<3.0% (95% у.д.). СМС предсказывает вклад CNO около 0.7%. 46±1.5(stat)+1.6-1.5(syst) cpd/100 t

  25. Борексино измерилвероятность выживания электронных нейтринов двух разных энергетических диапазонах • Средняя вероятность выживания для8B нейтринов предположении модели BS07(GS98) SSM составляет 0.29±0.10 для эффективной энергии 8.9 МэВ, в согласии с результатами черенковских детекторов. • Pee(0.862)=0.52+0.07-0.06

  26. Статус МСВ-решенияв 2002 До SNO Апрель 2002 SNO Декабрь 2002 KamLAND CPT ?

  27. Регенерация нейтрино в веществе (эффект день-ночь) МСВ с параметрами LMA для 8B нейтринопредсказывает ~2% асимметрию счета днем и ночью SNO : 0.037±0.040 SKI: 0.021±0.020 (+0.013-0.012) SKII: 0.014±0.049 (+0.025-0.024) Экспериментальные данные не позволяют сделать однозначный вывод о наличии асимметрии счета день/ночь из-за малой статистики

  28. Поиск суточных вариаций потока 7Be нейтрино Функция экспозиции для угла Θz (3 года набора данных) в LNGS (1 deg/bin). Интервал от -180 до -90 град. соотв. дню (360.25 дней), интервал от -90 до 0 – ночи (380.63 дней). На широте ГС Солнце в зенит никогда не поднимается. Absence of day/night asymmetry of 862 keV 7Be solar neutrino rate in Borexino and MSW oscillation parameters arXiv:1104.2150v1 [hep-ex] 12 Apr 2011

  29. Экспериментальные данные Подгонка (стандартный анализ) отдельно для Д и Н: A(Д/Н) =R/<R>= 0.007±0.073.

  30. Более чувствительный метод Предположение постоянного фона Используя R(7Be) = 46±1.5 (stat) +1.6-1.5 (syst) cpd/100 t получаем Adn = 0.001 ±0.012 (stat) ± 0.007 (syst)

  31. Анализ параметров нейтринных по даннымБорексино Используются только данные по асимметрии день/ночь. Заштрихованная область исключена на 99.73% у.д. В частности, минимальная асимметрия день/ночь, расчитанная для области LOW составляет 0.117, т.е. превышает измеренное допустимое на 8.5σ.

  32. Анализ параметров нейтринных осцилляций по данным Борексино Используются также другие результаты Борексино: поток 7Be и 8B нейтрино (0.217± 0.038(stat)± 0.008 (syst)) cpd/100 t, и спектральная форма 8B (5 бин от 3 до 13 МэВ). Учтены как экспериментальные ошибки в измерении потоков (стат. и сист. в квадратуре), так и теоретические ошибки предсказания потоков солнечных нейтрино, включая корелляцию потоков 7Be и 8B нейтрино Исп. последние расчеты в модели High Z (A. Serenelli, W. Haxton, and C. Pe~na-Garay, arXiv:1104.1639v1 [astro-ph]).

  33. Глобальный анализ Данные радиохимических экспериментов, Super-Kamiokande phase I и III, SNO LETA и phase III. 68.27, 95.45 и 99.73% у.д. допустимые области параметров. LMA (m2 = 5.3  10-5 eV2 и tan2Θ =0.47) Часть области LOW допустима χ2= 11.83. С учетом данных Борексино LMA слегка изменяется (m2 = 5.3  10-5 eV2 и tan2Θ =0.46), но область LOW исключена χ2>190.

  34. Mass varying neutrino flavor conversion. Для параметров, выбранных для подгонки в статье P. C. de Holanda, JCAP 0907, 024 (2009), отсутствие асимметрии день/ночь исключает этот механизм на у.д. > 20 σ

  35. Основные достиженияна сегодня 1.Продемонстрирована возможность глубокой очистки жидкого органического сцинтиллятора в масштабе сотен тонн 2.Измерен поток солнечных 7Be нейтрино с точностью 4.8% (цель-5%). Таким образом, Борексино впервые протестировал нейтринные осцилляции в до сих пор не исследованном вакуумном режиме, подтвердив механизм нейтиринных осцилляций МСВ с параметрами LMA 3.Установлено отсутствие суточных вариаций потока 7Be нейтрино на уровне 1%. Область параметров LOW исключена на у.д. >8.5σ без использования антинейтринных данных детектора Kamland, то есть в отсутствие предположения CPT инвариантности в нейтринном секторе. 4.Установлены новые пределы на эффективний магнитный момент солнечных нейтрино 5.Продемонстрирована возможность использования жидкого органического сцинтиллятора для детектирования 8B нейтрино. Определен поток нейтрино от 8B (15%) 6.Подтверждено существование геонейтрино на уровне 4.2σ (99.997%); Точность измерений сигнала U+Th пока что невысока: ~40% , идля свободного отношения U/Th точность измерения R(U) и R(Th) еще хуже 7.С помощью CTF и Борексино установлен ряд пределов на редкие процессы (время жизни электрона по отношению к распаду νe+γ;

  36. Перспективы • 7Be достигнута 5% точность измерения, ножелательная 3% точность (для калибровки при измерения потока “pp”, для улучшения точности солнечных моделей). Для этого требуется доочистка сцинтиллятора от 85Kr и210Bi. Сейчас проводится отработка новых методик. • 8B – результат может быть улучшен в 2 раза при наборе большей статистики. Другая возможность – использование большего доверительного объема. • Сезонные вариации (±3.5%) • Изучается возможность измерения (ограничения) потока CNO (зависит от подавления фона, связанного с космическими мюонами) • Возможно измерение потока pp-нейтринос точностью около 15% на годовой статистике (наложение сигналов от 14C ) • На большей статистике будет улучшено измерение потока геонейтрино и реактрных антинейтрино.

  37. Потенциал Borexino по регистрации нейтрино от вспышек сверхновых Borexino включен в сеть SNEWS (Super Nova Early Warning System)

  38. Поиск осцилляций на базе ~1 м (стерильные нейтрино) с искусственным источником нейтрино

More Related