170 likes | 328 Views
Electron Ring Optics Design. Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators. MEIC Review September 2010. Figure-8 Collider Rings. Collider Ring size is a compromise between synchrotron radiation and space charge. total ring circumference ~1000 m
E N D
Electron Ring Optics Design Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators MEIC Review September 2010
Figure-8 Collider Rings Collider Ring size is a compromise between synchrotron radiation and space charge total ring circumference ~1000 m 60 deg. crossing 3-11 GeV electrons 20-60 GeV ions (with 6 Tesla dipoles)
Collider Ring Architecture • Larger Figure-8 Rings (~1000 m circumference) • 6 Tesla bends for ions at 60 GeV • Additional straights to accommodate ‘snakes’ (ions) and RF (electrons) • Horizontal IR crossing, dispersion free straights • Spin Rotators (4) at arcs ends • Electron Collider Ring based on emittance preserving Optics • FODO (1350 phase adv/cell) • FMC/DBA Optics • TEM Optics?
15 0.15 0.5 BETA_X&Y[m] PHASE_X&Y DISP_X&Y[m] 0 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 0 Q_X Q_Y 4.03051 Electron Ring - 1350 FODO Cell E = 11 GeV phase adv/cell: Dfx,y= 1350 Arc dipoles: $Lb=110 cm $B=12.5 kGauss $ang=2.14 deg. $rho = 29.4 meter Arc quadrupoles $Lq=40 cm $G= 9kG/cm 1350 FODO offers emittance preserving optics – 〈H〉 minimum for FODO lattices Synchrotron radiation power per meter less than 20 kW/m
15 0.3 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 Emittance preserving Optics 1350 FODO F ~〈H〉 Minimized 〈H〉 over bends H = gD2 + 2aDD’ + bD’2 F 100 Equilibrium rms emittance at 5 GeV: ex = 1.87 ×10-8 m
15 0.15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 120 Quarter Arc Achromat 120 deg. Arc 2 dis. sup. cells 2 dis. sup. cells 26 FODO cells 60 × 1.1 meter dipoles
15 0.15 BETA_X&Y[m] DISP_X&Y[m] 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 260 Electron Ring - Arc Optics 240 deg. Arc quarter Arc – 120 meter Straight – 20 meter quarter Arc – 120 meter
15 0.15 BETA_X&Y[m] DISP_X&Y[m] -0.15 0 0 BETA_X BETA_Y DISP_X DISP_Y 494.097 Electron Half-Ring - Lattice ×2 Arc ‘inward’ – 260 m Straight – 234 m Ring circumference – 988 m
Spin Rotator - Ingredients… 15 0.15 BETA_X&Y[m] DISP_X&Y[m] -0.15 0 230 BETA_X BETA_Y DISP_X DISP_Y 320 Arc end BL = 28.7 Tesla m 8.8 0 BL = 11.9 Tesla m 4.4 0 Spin rotator ~ 46 m
Locally decoupled solenoid 5 15 BETA_X&Y[m] 0 0 0 BETA_1X BETA_2Y BETA_1Y BETA_2X 17.9032 BL = 28.7 Tesla m solenoid 4.16 m solenoid 4.16 m decoupling quad insert C 0 M = - C 0
Locally decoupled solenoid 1 15 BETA_X&Y[m] DISP_X&Y[m] -1 0 0 BETA_X BETA_Y DISP_X DISP_Y 17.9032 BL = 28.7 Tesla m solenoid 4.16 m solenoid 4.16 m decoupling quad insert C 0 M = - C 0
Spin Rotator - Optics 1 30 BETA_X&Y[m] DISP_X&Y[m] -1 0 288 BETA_X BETA_Y DISP_X DISP_Y 374 5 GeV BL = 28.7 Tesla m 8.8 0 BL = 11.9 Tesla m 4.4 0 Spin rotator ~ 46 m
Emittance preserving Optics 1 20 BETA_X&Y[m] DISP_X&Y[m] -1 0 28.5 BETA_X BETA_Y DISP_X DISP_Y 46 BL = 28.712 Tesla m Solenoid 2 Solenoid 1 8.8 deg. bend Minimized 〈H〉 over bends H = gD2 + 2aDD’ + bD’2
Spin Rotator Pair - Optics 1 30 1 30 BETA_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] DISP_X&Y[m] -1 -1 0 0 288 BETA_X BETA_Y DISP_X DISP_Y 374 490 BETA_X BETA_Y DISP_X DISP_Y 575 5 GeV BL = -11.8 T m -8.80 BL = -28.7 T m -4.40 4.40 BL = 28.7 T m 8.80 BL = 11.8 T m
15 15 0.3 0.3 BETA_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] DISP_X&Y[m] 0 0 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 Lower emittance - upgrade path E = 5 GeV E = 11 GeV 1350 FODO FMC Cell F = 100 F = 30 exeg = 1.87 ×10-8 m Minimize 〈H〉 over bends H = gD2 + 2aDD’ + bD’2
20 15 0.2 0.3 BETA_X&Y[m] DISP_X&Y[m] BETA_X&Y[m] DISP_X&Y[m] 0 0 0 0 0 BETA_X BETA_Y DISP_X DISP_Y 4.06 0 BETA_X BETA_Y DISP_X DISP_Y 4.03051 Extreme emittance preserving Optics E = 11 GeV TEM like Cell FMC Cell F = 3 F = 30
Summary • Complete design of Figure-8 Collider Rings (~ 1000 m circumference) • Emittance preserving Arcs based on 1350 FODO lattice • Compact spin rotators ‘meshed’ into the arcs • No dispersion suppression at arc end • Locally decoupled solenoid inserts • Beyond 1350FODO Optics in the arcs • FMC Optics • TEM Optics?