1 / 9

8.7 Modeling with Exponential & Power Functions

8.7 Modeling with Exponential & Power Functions. p. 509 How do you write an exponential function given two points? How do you write a power function given two points? Which function uses logs to solve it?. Just like 2 points determine a line, 2 points determine an exponential curve.

Download Presentation

8.7 Modeling with Exponential & Power Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 8.7 Modeling with Exponential & Power Functions p. 509 How do you write an exponential function given two points? How do you write a power function given two points? Which function uses logs to solve it?

  2. Just like 2 points determine a line, 2 points determine an exponential curve.

  3. Write an Exponential function, y=abx whose graph goes thru (1,6) & (3,24) • Substitute the coordinates into y=abx to get 2 equations. • 1. 6=ab1 • 2. 24=ab3 • Then solve the system:

  4. Write an Exponential function, y=abx whose graph goes thru (1,6) & (3,24) (continued) • 1. 6=ab1→ a=6/b • 2. 24=(6/b) b3 • 24=6b2 • 4=b2 • 2=b a= 6/b = 6/2 = 3 So the function is Y=3·2x

  5. Write an Exponential function, y=abx whose graph goes thru (-1,.0625) & (2,32) • .0625=ab-1 • 32=ab2 • (.0625)=a/b • b(.0625)=a • 32=[b(.0625)]b2 • 32=.0625b3 • 512=b3 • b=8 y=1/2 · 8x a=1/2

  6. Modeling with POWER functions a = 5/2b 9 = (5/2b)6b 9 = 5·3b 1.8 = 3b log31.8 = log33b .535 ≈ b a = 3.45 y = 3.45x.535 • y = axb • Only 2 points are needed • (2,5) & (6,9) • 5 = a 2b • 9 = a 6b

  7. You can decide if a power model fits data points if: • (lnx,lny) fit a linear pattern • Then (x,y) will fit a power pattern • See Example #5, p. 512 • You can also use power regression on the calculator to write a model for data.

  8. How do you write an exponential function given two points? y = abx • How do you write a power function given two points? y = axb • Which function uses logs to solve it? Power function y = axb

  9. Homework • Page 513 • 17-22, 29-35

More Related