960 likes | 1.26k Views
Chapter 8 Fuzzy Inference 模糊推論. Fuzzy set and Fuzzy Logic why “Fuzzy Subset” ? Ordinary set -- the foundation of present day mathematics.(S) S : a set e 5 : an element But in real world , the relation is usually “fuzzy” ! John is 170 cm John : an element. S = {x|x is tall}
E N D
Fuzzy set and Fuzzy Logic • why “Fuzzy Subset” ? Ordinary set -- the foundation of present day mathematics.(S) S : a set e5 : an element But in real world , the relation is usually “fuzzy” ! John is 170 cm John : an element G.J. Hwang
S = {x|x is tall} 180cm 高的人 S ? Yes 179cm 高的人 S ? Yes (179 和180只差 1cm) 178cm 高的人 S ? Yes (178 和179只差 1cm) • • • 170cm 高的人 S ? Yes (170 和171只差 1cm) 169cm 高的人 S ? Yes No (169 和170只差 1cm) • • • Why? 既然170是, 為何169不是? 120cm 高的人 S ? Yes (120 和121只差 1cm) G.J. Hwang
S ={x|x is tall} 假如找100個人投票,互相推選屬於S和不屬於S的人 150cm 160cm 170cm 180cm 1 0.5 0 0 John is 180cm John S with degree 1.0 John is 165cm John S with degree 0.5 John is 150cm John S with degree 0 JohnS G.J. Hwang
ordinary set is a particular case of the theory of fuzzy subset. let E be a set and A be a subset of E A E Characteristic function(x) x)= 1 if x A (yes) x)= 0 if x A (no) e.g. E={x1,x2,x3,x4,x5} let A = {x2,x3,x5} x1) = 0, x2 ) = 1, x3)= 1 x4) = 0, x5) = 1 G.J. Hwang
A different representation A = {(x1,0),(x2,1),(x3,1),(x4,0),(x5,1)} A A = 0 A A = E IF x A , x A (x)= 1, A(x)= 0 consider A ={x2,x3,x5} A(x1) = 1, A(x2) = 0, A(x3) = 0 A(x4) = 1, A(x5) = 0 A = {(x1,1),(x2,0),(x3,0),(x4,1),(x5,0)} G.J. Hwang
0 1 0 1 0 0 0 1 Given two subsets A and B (x) = 1, if x A = 0, if x A (x) = 1, if x B = 0, if x AB(x)= 1, if x A B = 0, if x A B AB(x)= (x) • (x) Boolean product G.J. Hwang
Union AB (x)= 1, if x A B = 0, if x A B AB (x)= (x) (x) + 0 1 + Boolean sum 0 1 0 1 1 1 • e.g. E = {x1,x2,x3,x4,x5} • two subsets A and B • A={x2,x3,x5}, B={x1,x3,x5} • AB = {(x1,0 1),(x2,1 0), (x3,1 1),(x4,0 0),(x5,1 1)} • = {(x1,1),(x2,1),(x3,1),(x4,0),(x5,1)} + + + + + G.J. Hwang
The concept of Fuzzy Subset • xi of E 或多或少 是A的元素 • A = {(x1|0.2),(x2|0),(x3|0.3),(x4|1),(x5|0.8)} Fuzzy Subset x1屬於A的 程度 (可能由0~1.0) 通常是主觀的認定,但至少 表達了Xis之間的相對程度 AE A is a Fuzzy Subset of E AE x1 , x2 , x3 0.2 0 0.3 membership x2A G.J. Hwang
Zadehs definition of Fuzzy subset Let E be a set, denumerable or not, let x be an element of E. Then Fuzzy subset A of E is a set of ordered pairs {(x|(x)}, xE. Where (x) : grade of membership of x in A (x) takes its values in a set M (membership set) x M IF M={0,1} fuzzy subset of A will be a nonfuzzy subset (or ordinary set) mapping (x) G.J. Hwang
E.g. Let N be the set of natural numbers N = {0,1,2,3,4,5,6,...} consider the fuzzy set A of smallnatural numbers A = {(0/1),(1/0.8),(2/0.6),(3/0.4),(4/0.2),(5/0),(6/0),...} 用傳統的ordinary set很難表達 A = {(0,1),(1,1),(2,1),(3,1),(4,1),(5,0),(6,0),...} ? G.J. Hwang
0 for x 2[(x- )/()]2 for x 1- 2[(x- )/()]2 for x 1 for x S (x; ) = S- Function 1 0.5 0 G.J. Hwang
0 for x 2[(x- 5)/(7)]2 = [(x- 5) 2/2] for 5x 1- 2[(x- 7)/(7)]2 =1-[(x- 7) 2 /2] for 6x 1 for x S (x; ) = 1.0 0.9 TALL Membership Function 0.5 6 6.5 7 Height in Feet A membership Function for the Fuzzy Set TALL G.J. Hwang
Close- Function close(x; ,)= with crossover points x = 1.0 close(x; ,) 0.5 x G.J. Hwang
E = { x|x= 價格合理的牛排 ?} 220NT 120 =220NT =120NT 1.0 close(x; 220,120) 0.5 100 340 220NT G.J. Hwang
1 0.5 x function G.J. Hwang
價格合理的牛排 1 0.5 120 220NT 320 G.J. Hwang
d1 d3 d2 d4 d5 Fuzzy Database systems 找一個停車容易,且價格合理的餐廳 以停車為優先考慮 E = {x|x = 離火車站近的餐館 } Km G.J. Hwang
dialogue Laws of thought are Fuzzy Fuzzy Logic Binary Logic: The logic associated with the Boolean theory of set Fuzzy Logic : The Logic associated with the same manner with the theory of fuzzy subsets G.J. Hwang
A(x) : membership function of the element x in the fuzzy subset A M = [0,1] Let A, B be two fuzzy subsets of E and x is an element of E a = A(x) , b = A(x) a,b,...M = [0,1] G.J. Hwang
Distributivity Commutativity Associativity G.J. Hwang
DeMorgan s Law are true, but not trivial G.J. Hwang
Tall Not Short 5 0 0.00 5 4 0.08 5 8 0.326 0 0.50 6 4 0.82 6 8 0.98 7 0 1.00 5 0 0.00 5 4 0.08 5 8 0.326 0 0.50 6 4 0.82 6 8 0.98 7 0 1.00 IF tall THEN not short G.J. Hwang
Complementation Tall Not Tall 5 0 0.00 5 4 0.08 5 8 0.326 0 0.50 6 4 0.82 6 8 0.98 7 0 1.00 5 0 1.00 5 4 0.92 5 8 0.686 0 0.50 6 4 0.18 6 8 0.02 7 0 0.00 G.J. Hwang
5 0 1.00 5 4 0.92 5 8 0.686 0 0.50 AND 6 4 0.18 6 8 0.02 7 0 0.00 5 0 0.00 5 4 0.08 5 8 0.326 0 0.50 6 4 0.82 6 8 0.98 7 0 1.00 5 0 0.00 5 4 0.08 5 8 0.326 0 0.50 6 4 0.18 6 8 0.02 7 0 0.00 Not Tall Not Short Middle-Sized G.J. Hwang
r=0.7 r=0.5 r=0.3 Linguistic Hedge Operation- Scalar Ura(x) = rUa(x) G.J. Hwang
r = 0.5 r = 2 r = 4 Linguistic Hedge Operation- Power Uar(x) = ((Ua(x))r G.J. Hwang
NORM(A) A Linguistic Hedge Operation- Normalization UA =supUA(X) G.J. Hwang
A CON(A) Linguistic Hedge Operation- Concentration Ucon(A) = UA2(X) G.J. Hwang
Linguistic Hedge Operation- Dilation UDIL(A)(X) = UA0.5(X) DIL A .5 G.J. Hwang
A INT(A) 0.5 2(UA(X))2 0 UA(X) 0.5 1-2(1-UA(X))2 0.5 UA(X) 1.0 UINT(A)(X) = Linguistic Hedge Operation- Intensification G.J. Hwang
Usage of Linguistic Hedge Operations Very A = CON(A) More Or less A = DIL(A) Slightly A = NORM(A and not (very A)) Sort of A = NORM(not (CON(A)2and DIL(A)) Pretty A = NORM(INT(A) and not INT(CON(A))) Rather A = NORM(INT(A)) G.J. Hwang
Linguistic truth value True Very true More or less true Completely true False Very False More or less false Completely false Unknown Undefined G.J. Hwang
Fuzzy Proposition “Mr.Wang is young.” is true. “Mr.Wang is young.” is very true. “Mr.Wang is young.”is more or less true. G.J. Hwang
Tall Height Degree of membership 5 0 0.0 5 4 0.1 5 8 0.3 6 0 0.5 6 4 0.8 6 8 0.9 7 0 1.00 VERY Tall Height Degree of membership 5 0 0.0 5 4 0.01 5 8 0.09 6 0 0.25 6 4 0.64 6 8 0.81 7 0 1.00 G.J. Hwang
~ A A E ~ ~ A A ~ ~ A A = min ( A(X),A(X)) 0.5 ~ ~ ~ ~ A A = max ( A(X), A (X)0.5 ~ ~ ~ ~ A ~ A 1 0.5 0 X Figure 5-12 Fuzzy Complement G.J. Hwang
Fuzzy Relation A crisp relation represents the presence or absence of association, interaction, or interconnectedness between the elements of two or more sets. G.J. Hwang
Heavy(100) (140) (160) (200) (240) (280) (300) Tall 0.00 0.00 0.18 0.50 0.98 1.00 1.00 (5 0 ) 0.00 .00 .00 .00 .00 .00 .00 .00 (5 4 ) 0.08 .00 .00 .08 .08 .08 .08 .08 (5 8 ) 0.32 .00 .00 .18 .32 .32 .32 .32 (6 0 ) 0.50 .00 .00 .18 .50 .50 .50 .50 (6 4 ) 0.82 .00 .00 .18 .50 .82 .82 .82 (6 8 ) 0.98 .00 .00 .18 .50 .98 .98 .98 (7 0 ) 1.00 .00 .00 .18 .50 .98 1.00 1.00 Binary Relation • Any relation between two sets X and Y is known as a binary relation. It is usually denoted by R(X,Y). G.J. Hwang
Y1 Y2 Y3 Y4 X1 X2 X3 X4 .9 0 .5 .3 .4 .2 .1 .9 0 0 .5 .6 0 .2 0 .4 Representation of binary relations Membership matrices G.J. Hwang
y x 120 130 140 150 160 120 1.0 0.7 0.4 0.2 0.0 130 0.7 1.0 0.6 0.5 0.2 140 0.4 0.6 1.0 0.8 0.5 150 0.2 0.5 0.8 1.0 0.8 160 0.0 0.2 0.5 0.8 1.0 R3(y) = R1(x) R2(x,y) max min(u1(x),u2(x,y)) x Max_Min Composition R1(x) = 0.6/140 + 0.8/150 + 1.0/160 R2: The Relation APPROXIMATELY EQUAL Defined on Weights G.J. Hwang
1.0 0.7 0.4 0.2 0.0 0.7 1.0 0.6 0.5 0.2 0.4 0.6 1.0 0.8 0.5 0.2 0.5 0.8 1.0 0.8 0.0 0.2 0.5 0.8 1.0 R1(x) R2(x,y) 0.0/x1 x1 1.0 y1 + 0.7 0.0/x2 x2 y2 + 0.4 0.6/x3 x3 y3 + 0.2 0.8/x4 x4 y4 + 0.0 1.0/x5 x5 y5 0.4 R3(y) = [0.0 0.0 0.6 0.8 1.0] G.J. Hwang
R3(120) = max min[(.6,.4),(.8,.2)]= max (.4,.2) = 0.4 R3(130) = max min[(.6,.6),(.8,.5),(1,.2)]= max (.6,.5,.2) = 0.6 R3(140) = max min[(.6,.1),(.8,.8),(1,.5)]= max (.6,.8,.5) = 0.8 R3(150) = max min[(.6,.8),(.8,.1),(1,.8)] = max (.6,.8,.8) = 0.8 R3(160) = max min[(.6,.5),(.8,.8),(1,1)] = max (.5,.8,1) = 1 G.J. Hwang
y1 y2 y3 y4 y5 x1 x2 x3 0.1 0.2 0 1 0.7 0.3 0.5 0 0.2 1 0.8 0 1 0.4 0.3 z1 z2 z3 z4 y1 y2 y3 y4 y5 0.9 0 0.3 0.4 0.2 1 0.8 0 0.8 0 0.7 1 0.4 0.2 0.3 0 0 1 0 0.8 Composition of Two Fuzzy Relations R1(x,y) R2(y,z) R3(x,z) = ? G.J. Hwang
R(x) = [0.5 0.2 0.6] R(z) = ? R(z) = R(x) R1(x,y) R2(y,z) = R(x) R3(x,z) 0.10.9 x1 y1 z1 0.4 0.2 0.2 Max 0 y2 0.8 1 y3 0.70.4 y4 0 y5 Mix G.J. Hwang
Membership Grade Image Missile Fighter Airliner 1 1.0 0.0 0.0 2 0.9 0.0 0.1 3 0.4 0.3 0.2 4 0.2 0.3 0.5 5 0.1 0.2 0.7 6 0.1 0.6 0.4 7 0.0 0.7 0.2 8 0.0 0.0 1.0 9 0.0 0.8 0.2 10 0.0 1.0 0.0 Membership Grades for Images Fuzzy Rules G.J. Hwang
1/M 1 . 9/M + .1/A 2 .4/M + .3/F + .2/A 3 .2/M + .3/F + .5/A 4 .1/M + .2/F + .7/A 5 .1/M + .6/F + .4/A 6 .7/M + .2/A 7 1/A 8 .8/M + .2/A 9 1/F 10 G.J. Hwang
IF IMAGE4 THEN TARGET4 = 0.2/M + 0.3/F + 0.5/A IF IMAGE6 THEN TARGET6 = 0.1/M + 0.6/F + 0.4/A + : set union 假設現由二個不同觀測點得到IMAGE4及IMAGE6 TARGET = TARGET 4 + TARGET 6 = 0.2/M + 0.3/F + 0.5/A + 0.1/M + 0.6/F + 0.4/A = 0.2/M + 0.6/F + 0.5/A G.J. Hwang
removed cement water sand . Maximum and Moments Methods R1: IF MIX is too-wet THEN Add sand and coarse aggregate R2: IF MIX is Workable THEN Leave alone R3: IF MIX is too-stiff THEN Decrease sand and coarse aggregate G.J. Hwang
TOO STIFF WORKABLE TOO WET 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 3 4 5 6 7 8 9 Concrete Slump (inches) Membership Grade Fuzzy Production Rule Antecedents for Concrete Mixture Process G.J. Hwang
IF Concrete-slump = 6 THEN MIX = 0.0/Too-stiff + 1.0/workable + 0.0/Too-wet IF Concrete-slump = 7 THEN MIX = 0.0/Too-stiff + 0.3/workable + 0.0/Too-wet . . . IF Concrete-slump = 4.8 THEN MIX = 0.05/Too-stiff + 0.2/workable +0.0/Too-wet G.J. Hwang