330 likes | 338 Views
Explore the challenges of generating semantic web content from SQL databases and the evolution of SQL as a moving target.
E N D
SQL Databases are a Moving Target Juan F. Sequeda – jsequeda@cs.utexas.edu Syed Hamid Tirmizi – hamid@cs.utexas.edu Daniel P. Miranker – miranker@cs.utexas.edu Department of Computer Sciences The University of Texas at Austin
My favorite slide SEMANTIC WEB DATABASES
The Semantic Web Vision Semantic Query Engine User Layer: Users and agents interact with this layer and query the ontologies Ontology Layer: defines the semantic representation of RDB. Inference Local ontology Local ontology Local ontology DB DB DB Database Layer: Data that needs to accessed semantically
So what should be done? • Make it easy for existing databases to generate Semantic Web content. Research Problem(s): Generate Ontologies from Database Content • (many systems already make RDF from database data) • Mapping database restrictions to OWL • People don’t live past 120 years old • Mining database content for additional domain knowledge • Professors earn more than teaching assistants
Semantic Query Engine Local ontology Local ontology Local ontology DB DB DB Finally: Can the Semantic Web Work? • We see a big problem: • Who builds this? • Who generates thesemappings?
The Semantic Web Vision Semantic WebQuery Engines Local ontology generate Schema/ Metadata RDF DB Table Content SQL-query translate
Our Position • SQL has semantics • SQL has been evolving it is a moving target! • SQL DDL can be used to generate local ontologies • A Greatest Common Denominator like OWL-DL can aid with data integration
Why are SQL Databases Moving Targets? • In the beginning we had… Relational ModelStudent(Juan, 22) • SQL86-89 came out with Table DefinitionsCREATE TABLE employee ( name VARCHAR(100), age INTEGER) • SQL92 added data integrity ConstraintsCHECK, PRIMARY KEY, FOREIGN KEY, UNIQUE • SQL99 added Triggers
SQL DDL to Ontologies • Requirements • To create the ontology automatically, we need to compare the technologies • We need to identify constructs with similar semantics • Analysis • Our analysis leads to a layer cake for SQL with corresponding layers in the Semantic Web stack • Implementation • We express our transformations as FOL and use SQL BNF as a guideline for completeness.
Relational Model to RDF • Relational Model • Employee(name, age) • T1: Employee (Juan, 21) • RDF <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://www.example.com/#"> <rdf:Description rdf:about="http://www.example.com/employee"> <ex:name>Juan</ex:name> <ex:age>21</ex:age> </rdf:Description> </rdf:RDF>
Table Definition to RDFS • Table Definition CREATE TABLE employee ( name VARCHAR(100), age INTEGER) • RDFS
Table Definition to RDFS <?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> <rdfs:Class rdf:ID="employee"> <rdfs:comment>Employee</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax- ns#Resource"/> </rdfs:Class> <rdf:Property rdf:ID="name"> <rdfs:comment>Name of Employee</rdfs:comment> <rdfs:domain rdf:resource="#employee"/> <rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal"/> </rdf:Property> <rdf:Property rdf:ID="age"> <rdfs:comment>Age of Employee</rdfs:comment> <rdfs:domain rdf:resource="#employee"/> <rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal"/> </rdf:Property> </rdf:RDF> Table Name Attributes Data type
SQL to RDFS • Tables rdfs:Class • Columns rdf:Property • Table rdfs:Domain • Datatype rdfs:Range • Foreign Keys rdf:Property • Table rdfs:Domain • Referencing Table rdfs:Range
SQL to OWL CREATE TABLE employee( employee_id INTEGER PRIMARY KEY, employee_ssn VARCHAR(11) UNIQUE, employee_name VARCHAR(100) NOT NULL, employee_salary INTEGER NOT NULL, employee_type CHAR(8) CHECK ( employee_type IN ('TEMP', 'FULLTIME', 'CONTRACT')) dept INTEGER FOREIGN KEY (dept) REFERENCES department (dept_id)) CREATE TABLE department( dept_id INTEGER PRIMARY KEY, dept_name VARCHAR(100) NOT NULL, manager INTEGER FOREIGN KEY (manager) REFERENCES employee (employee_id))
SQL to OWL <owl:Class rdf:ID="Department"/> <owl:ObjectProperty rdf:ID="dept"> <rdfs:domain rdf:resource="#Employee"/> <rdfs:range rdf:resource="#Department"/> </owl:ObjectProperty> <owl:DatatypeProperty rdf:ID="age"> <rdf:type rdf:resource="&owl;FunctionalProperty"/> <rdfs:domain rdf:resource="#Employee"/> <rdfs:range rdf:resource="&xsd;int"/> </owl:DatatypeProperty> Table Name Foreign Key Attribute Data type
SQL to OWL <owl:DatatypeProperty rdf:ID="employee_type"> <rdfs:domain rdf:resource="#Employee"/> <rdfs:range> <owl:DataRange> <owl:oneOf> <rdf:List> <rdf:first rdf:datatype="&xsd;string">Temp</rdf:first> <rdf:rest> <rdf:List> <rdf:first rdf:datatype="&xsd;string">Fulltime</rdf:first> <rdf:rest> <rdf:List> <rdf:first rdf:datatype="&xsd;string">Contract</rdf:first> <rdf:rest rdf:resource="&rdf;nil"/> </rdf:List> </rdf:rest> </rdf:List> </rdf:rest> </rdf:List> </owl:oneOf> </owl:DataRange> </rdfs:range> </owl:DatatypeProperty> Enumerated Check Constraint
Rules: SQL to OWL • Binary Relation: a relation that only has two foreign keys (single or composite) referencing two relations. • Class: A relation that is not a binary relation is a class. • Object Property • A binary relation is an object property • A foreign key that references another relation is an object property, whose domain is the current relation and range is the relation that the foreign key references
Rules: SQL to OWL • Data type Property: If an attribute is not an object property, then it is a data type property. Its domain is the current relation and the range is the data type.
SQL to Rules • Triggers are business rules and it can not be expressed in OWL • Should think about how this could be mapped to the rule layer of the Semantic Web And the final layer cake…
Greatest Common Denominator for Data Integration • All ontologies generated by SQL should have similar semantic power to facilitate better data integration • Use of different technologies may cause problems in data integration • The constructs we use has OWL-DL as GCD • OWL-DL is what SW people like the most. • Reasoning and Inference • Decidability • Computational Completeness • Therefore OWL-DL should be the target for SQL to Semantic Web transformations.
Summary • SQL has semantics • SQL has been evolving it is a moving target! • SQL DDL can be used to generate local ontologies • A Greatest Common Denominator like OWL-DL can aid with data integration
Discussion Topics • Hierarchy and Inheritance • SQL DDL doesn’t have it • How do database people model it • Not clear how to get the semantics • CHECK Constraint • Has more semantics that OWL can handle • CHECK (value >0 AND value < 360) • OWL Constraints • allValuesFromsomeValuesFrom • URI
Discussion Topics: Hierarchy and Inheritance • Hierarchy and Inheritance • Integrate information that is spread across several relations (vertical partitioning) and can be either • Integrated in one concept • Inheritance But how do you decide! • Key Equality and Data Inclusion: two relations that share the same primary key and the child relation’s primary key is also a foreign key SoftwareProject Project PK PK, FK
Discussion Topics: Hierarchy and Inheritance • How do you represent Hierarchy and Inheritance in database? • Hierarchy: Hand - Finger Hand Finger ? PK FK • Inheritance: Person - Student Person Student PK PK PK, FK
Discussion Topics: someValuesFrom vs allValuesFrom A(id, x) B(id, y) C(A_id, B_id) • Can we say that A and B are classes? Yes • Can we say that C represents an object property? Yes • Can we say that B can only be connected to A using the object property? ¿? • Can we say anything about the cardinality of this relation? ¿?
Discussion Topics: CHECK Constraint • Embodies semantics and rules at the same time • Enumerated CHECK constraint owl:one of • But what about: • CHECK (value >0 AND value < 360)
Translation BNF: SQL to OWL <sql-owl statement> ::= <class defintion> <property table>| <object property definition> <class definition> ::= CREATE TABLE <table name> <object property definition> :: = <object definition> <object property table> <object definition> ::= CREATE TABLE <table name> <object property table> ::= <left paren> <object property references> <object property references> <right paren> <property table>::= <left paren> <property> [ { <comma> <property}...] <property> ::= <object property> |<datatype property>