740 likes | 1.04k Views
Células Madre Dentales. ARTÍCULOS CIENTÍFICOS. Para solicitar los artículos completos en PDF: equipodentistas@bioeden.com.mx. Junio 2011.
E N D
Células Madre Dentales ARTÍCULOS CIENTÍFICOS Para solicitar los artículos completos en PDF: equipodentistas@bioeden.com.mx Junio 2011
- A continuación se presentan algunos ARTÍCULOS CIENTÍFICOS sobre el potencial terapéutico de las células madre dentales.Los temas a encontrar en cada diapositiva, son: TÍTULO y AUTORES JOURNAL TRATAMIENTO POTENCIAL ABSTRACT NAVEGACIÓN RESUMEN
1. En el Menú de Temas, da Click en el tema de tu elección. Ejemplo:2. Para seguir navegando utiliza los siguientes botones: Instrucciones: Regenaración de Piel ----Se recomienda visualizarlo en Pantalla Completa----
Células Madre Mesenquimales de Origen Dental Regeneración Dental Regeneración Huesos y Estructura Craneofacial Regeneración Cardiaca Problemas Neurológicos Regeneración de Córnea Regenaración de Piel Diabetes Regeneración Hepática Regeneración Muscular y Cirugía Plástica Enfermedades Auto-Inmunes y Lupus Otros Artículos
Células Madre Mesenquimales de Origen Dental • Resumen del Tema: • Los dientes primarios y algunos dientes permanentes son una fuente accesible de células madre multipotenciales que se pueden diferenciar en distintos tipos de células como células nerviosas, adipocitos, osteoblastos, condrocitos, miocitos y odontoblastos. • Las células madre dentales se pueden multiplicar in-vitro varias generaciones y se pueden obtener trillones de células para su utlización terapéutica. • De la misma forma éstas células se pueden crío-preservar sin perder su multipotencialidad. • Debido a su accesibilidad y sus altas tasas de proliferación celular son candidatos idóneos para la ingeniería de tejidos y tratamientos regenerativos.
TÍTULO SHED: stem cells from human exfoliated deciduous teeth. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. JOURNAL Proc Natl Acad Sci U S A. 2003 May 13;100(10):5807-12. Epub 2003 Apr 25. TRATAMIENTO POTENCIAL Células Madre Mesenquimales de Origen Dental ABSTRACT To isolate high-quality human postnatal stem cells from accessible resources is an important goal for stem-cell research. In this study we found that exfoliated human deciduous tooth contains multipotent stem cells [stem cells from human exfoliated deciduous teeth (SHED)]. SHED were identified to be a population of highly proliferative, clonogenic cells capable of differentiating into a variety of cell types including neural cells, adipocytes, and odontoblasts. After in vivo transplantation, SHED were found to be able to induce bone formation, generate dentin, and survive in mouse brain along with expression of neural markers. Here we show that a naturally exfoliated human organ contains a population of stem cells that are completely different from previously identified stem cells. SHED are not only derived from a very accessible tissue resource but are also capable of providing enough cells for potential clinical application. Thus, exfoliated teeth may be an unexpected unique resource for stem-cell therapies including autologous stem-cell transplantation and tissue engineering. Los dientes primarios son una fuente accesible de células madre multipotenciales que se pueden diferenciar en distintos tipos de células como células nerviosas, adipocitos, osteoblastos y odontoblastos. Debido a su accesibilidad y sus altas tasas de proliferación celular son candidatos idóneos para la ingeniería de tejidos y transplantes autólogos. RESUMEN
Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. Arora V, Arora P, Munshi AK. TÍTULO JOURNAL J Clin Pediatr Dent. 2009 Summer;33(4):289-94. TRATAMIENTO POTENCIAL Células Madre Mesenquimales de Origen Dental ABSTRACT Tooth derived cells are readily accessible and provide an easy and minimally invasive way to obtain and store stem cells for future use. Banking ones own tooth-derived stem cells is a reasonable and simple alternative to harvesting stem cells from other tissues. Obtaining stem cells from human exfoliated deciduous teeth (SHED) is simple and convenient, with little or no trauma. Every child loses primary teeth, which creates the perfect opportunity to recover and store this convenient source of stem cells--should they be needed to treat future injuries or ailments and presents a far better alternative to simply discarding the teeth or storing them as mementos from the past. Furthermore, using ones own stem cells poses few, if any, risks for developing immune reactions or rejection following transplantation and also eliminates the potential of contracting disease from donor cells. Stem cells can also be recovered from developing wisdom teeth and permanent teeth. Individuals have different opportunities at different stages of their life to bank these valuable cells. It is best to recover stem cells when a child is young and healthy and the cells are strong and proliferative. The purpose of this review is to discuss the present scenario as well as the technical details of tooth banking as related to SHED cells. Las células madre de los dientes primarios son accesibles y fáciles de obtener, considerando que la dentición primaria se exfolia naturalmente. La crío-preservación de estás células madre es recomendable puesto que las mismas pueden ser utilizadas por el paciente, sin problemas de rechazo, en el tratamiento de varias enfermedades. RESUMEN
Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Huang GT, Gronthos S, Shi S. TÍTULO JOURNAL J Dent Res. 2009 Sep;88(9):792-806. TRATAMIENTO POTENCIAL Células Madre Mesenquimales de Origen Dental To date, 5 different human dental stem/progenitor cells have been isolated and characterized: dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAP), and dental follicle progenitor cells (DFPCs). These postnatal populations have mesenchymal-stem-cell-like (MSC) qualities, including the capacity for self-renewal and multilineage differentiation potential. MSCs derived from bone marrow (BMMSCs) are capable of giving rise to various lineages of cells, such as osteogenic, chondrogenic, adipogenic, myogenic, and neurogenic cells. The dental-tissue-derived stem cells are isolated from specialized tissue with potent capacities to differentiate into odontogenic cells. However, they also have the ability to give rise to other cell lineages similar to, but different in potency from, that of BMMSCs. This article will review the isolation and characterization of the properties of different dental MSC-like populations in comparison with those of other MSCs, such as BMMSCs. Important issues in stem cell biology, such as stem cell niche, homing, and immunoregulation, will also be discussed. ABSTRACT Las células madre dentales se pueden diferenciar en tejido osteogénico, condrogénico, adipogénico, miogénico y neurogénico. También se comparan las células madre provenientes del tejido periodontal y de la papila apical, y del folículo dental. RESUMEN
Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. Oda Y, Yoshimura Y, Ohnishi H, Tadokoro M, Katsube Y, Sasao M, Kubo Y, Hattori K, Saito S, Horimoto K, Yuba S, Ohgushi H. TÍTULO JOURNAL J Biol Chem. 2010 Sep 17;285(38):29270-8. Epub 2010 Jul 1. TRATAMIENTO POTENCIAL Células Madre Mesenquimales de Origen Dental ABSTRACT The expression of four transcription factors (OCT3/4, SOX2, KLF4, and MYC) can reprogram mouse as well as human somatic cells to induced pluripotent stem (iPS) cells. We generated iPS cells from mesenchymal stromal cells (MSCs) derived from human third molars (wisdom teeth) by retroviral transduction of OCT3/4, SOX2, and KLF4 without MYC, which is considered as oncogene. Interestingly, some of the clonally expanded MSCs could be used for iPS cell generation with 30-100-fold higher efficiency when compared with that of other clonally expanded MSCs and human dermal fibroblasts. Global gene expression profiles demonstrated some up-regulated genes regarding DNA repair/histone conformational change in the efficient clones, suggesting that the processes of chromatin remodeling have important roles in the cascade of iPS cells generation. The generated iPS cells resembled human embryonic stem (ES) cells in many aspects, including morphology, ES marker expression, global gene expression, epigenetic states, and the ability to differentiate into the three germ layers in vitro and in vivo. Because human third molars are discarded as clinical waste, our data indicate that clonally expanded MSCs derived from human third molars are a valuable cell source for the generation of iPS cells. Las células madre de las muelas del juicio se pueden reprogramar para convertirse en células madre pluripotentes obteniendo las mismas características de las células madre embrionarias. RESUMEN
Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. Yu J, He H, Tang C, Zhang G, Li Y,Wang R, Shi J, Jin Y. TÍTULO JOURNAL BMC Cell Biol. 2010 May 8;11:32. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL Dental pulp stem cells (DPSCs) can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1), the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin), odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein), and chondrocyte-specific gene/protein (type II collagen) was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9). Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo. ABSTRACT Las células madre dentales pueden convertirse en odontoblastos, osteoblastos y condrocitos. Se analiza esta capacidad de multidiferenciación en distintos pases celulares. RESUMEN
Human dental pulp stem cells: from biology to clinical applications. d'Aquino R, De Rosa A,Laino G,Caruso F, Guida L, Rullo R, Checchi V, Laino L, Tirino V, Papaccio G. TÍTULO JOURNAL J Exp Zool B Mol Dev Evol. 2009 Jul 15;312B(5):408-15. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL Dental pulp stem cells (DPSCs) can be found within the "cell rich zone" of dental pulp. Their embryonic origin, from neural crests, explains their multipotency. Up to now, two groups have studied these cells extensively, albeit with different results. One group claims that these cells produce a "dentin-like tissue", whereas the other research group has demonstrated that these cells are capable of producing bone, both in vitro and in vivo. In addition, it has been reported that these cells can be easily cryopreserved and stored for long periods of time and still retain their multipotency and bone-producing capacity. Moreover, recent attention has been focused on tissue engineering and on the properties of these cells: several scaffolds have been used to promote 3-D tissue formation and studies have demonstrated that DPSCs show good adherence and bone tissue formation on microconcavity surface textures. In addition, adult bone tissue with good vascularization has been obtained in grafts. These results enforce the notion that DPSCs can be used successfully for tissue engineering. ABSTRACT Las células madre dentales pueden convertirse en dentina y en tejido óseo. Con la utilización de andamios en 3D se observa que éstas células pueden ser utilizadas exitosamente en la ingeniería de tejidos. RESUMEN
In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages. Zhang W, Walboomers XF, Van Kuppevelt TH, Daamen WF, Van Damme PA, Bian Z, Jansen JA. TÍTULO JOURNAL J Tissue Eng Regen Med. 2008 Mar-Apr;2(2-3):117-25. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL An increasing number of investigations supports that adult stem cells have the potential to differentiate into matured cell types beyond their origin, a property defined as plasticity. Previously, the plasticity of stem cells derived from dental pulp (DPSC) has been confirmed by culturing cells in lineage-specific media in vitro. In the current study, the in vivo differentiation or maturation potential of DPSC was further analysed, by transplanting human DPSC/collagen scaffold constructs into subcutaneous tissue of immunocompromised mice. Cells received odontogenic, adipogenic or myogenic pre-induction, whereas control samples received no stimulation. Also blank collagen scaffolds were implanted. The results indicated that seeded cells produced tissue within the implanted constructs after 3 weeks of implantation. According to morphological and phenotypical changes, the pre-induced DPSC showed the ability to further differentiate along odontogenic, myogenic and adipogenic pathways in vivo. Moreover, DPSC without pre-treatment were able to spontaneously differentiate along odontogenic and adipogenic directions in vivo. However, only limited mature morphological changes were detected in histology. In summary, stem cells derived from human dental pulp form a suitable source for tissue engineering and cell-mediated therapy, although additional analyses should be considered. ABSTRACT Las células madre dentales pueden convertirse en distintos tipos de tejidos y pueden ser una fuente idónea de células para la ingeniería de tejidos. Los autores recomiendan mayor investigación en el tema. RESUMEN
Stem Cells: Sources, Therapies and The Dental Professional TÍTULO JOURNAL Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL ABSTRACT Las células madre dentales están en investigación para tratar el Parkinson, degeneración neural, problemas cardiovasculares y enfermedades auto-inmunes. Éstas Células podrán ser utilizadas en odontología para reemplazar tejido craneofacial, tratar glándulas salivales defectuosas entre otras. En general se repasan los beneficios de la preservación de las células madre dentales y el papel que juegan los dentistas en este proceso. RESUMEN
Evaluation of pluripotency in human dental pulp cells. Koyama N, Okubo Y,Nakao K, Bessho K. TÍTULO JOURNAL J Oral Maxillofac Surg. 2009 Mar;67(3):501-6. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL Postnatal stem cells have been isolated from various tissues, including bone marrow, neural tissue, skin, retina, and dental epithelium. Recently, adult stem cells have been isolated from human dental pulp. Postnatal stem cells have been isolated from a variety of tissues. Previously, it was generally accepted that the differentiation potential of postnatal stem cells was lineage restricted. Normal impacted third molars were collected from adults and normal exfoliated deciduous teeth (SHED; stem cells from human exfoliated deciduous teeth) by single-colony selection and magnetic activated cell sorting. BMP-2 treatment groups produced alkaline phosphatase in the cells and also produced and secreted osteocalcin in the culture medium, and were capable of inducing an upregulated expression of Osteocalcin or Sox9, Col 2, and Col X by reverse transcriptase polymerase chain reaction (RT-PCR). For adipogenic differentiation, there is potential for SHED and dental pulp stem cells (DPSC) to express 2 adipocyte-specific transcripts, PPARgamma2 and LPL, in vitro, as do bone marrow mesenchymal stem cells by RT-PCR. This study demonstrated that pluripotential cells isolated from the pulp of human teeth expanded in vitro and differentiated into osteoblasts, chondrocytes, and adipocytes. DPSC and SHED are not only derived from a very accessible tissue resource but also capable of providing enough cells for potential clinical applications. ABSTRACT Las células madre dentales pueden diferenciarse en osteoblastos, condrocitos y adipositos. La manera de obtenerlas es muy sencilla y además son capaces de reproducirse para proveer las cantidades celulares necesarias para aplicaciones clínicas. RESUMEN
Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA. TÍTULO JOURNAL Tissue Eng. 2006 Oct;12(10):2813-23. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL The current study aimed to prove that human dental pulp stem cells (hDPSCs) isolated from the pulp of third molars can show multilineage differentiation after cryopreservation. First, hDPSC were isolated via enzymatic procedures, and frozen in liquid nitrogen until use. After defrosting, cells were analyzed for proliferative potential and the expression of the stem cell marker STRO-1. Subsequently, cells were cultured in neurogenic, osteogenic/odontogenic, adipogenic, myogenic, and chondrogenic inductive media, and analyzed on basis of morphology, immunohistochemistry, and reverse transcriptase-polymerase chain reaction (RT-PCR) for specific marker genes. All data were replicated, and the results of the primary cells were compared to similar tests with an additional primary dental pulp stem cell strain, obtained from the National Institutes of Health (NIH). Results showed that our cell population could be maintained for at least 25 passages. The existence of stem/ progenitor cells in both cell strains was proven by the STRO-1 staining. Under the influence of the 5 different media, both cell strains were capable to advance into all 5 differentiation pathways. Still differences between both strains were found. In general, our primary culture performed better in myogenic differentiation, while the externally obtained cells were superior in the odontogenic/osteogenic and chondrogenic differentiation pathways. In conclusion, the pulp tissue of the third molar may serve as a suitable source of multipotent stem cells for future tissue engineering strategies and cell-based therapies, even after cryopreservation. ABSTRACT Las células madre dentales fueron crío-preservadas y después se les hicieron pruebas de multipotencialidad para verificar si seguían teniendo la posibilidad de diferenciarse en distintos tipos de tejidos. El experimento demostró que aún despues de la crío-preservación las células madre dentales seguían manteniendo su multi-potencialidad. RESUMEN
TÍTULO JOURNAL Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL ABSTRACT Se cultivaron células madre dentales y se lograron más de 40 dupliaciones de población celular sin afectar la viabilidad celular ni las propiedades biológicas y fenotípicas de las células madre. RESUMEN
Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. TÍTULO Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS. JOURNAL Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL Dental pulp is a promising source of mesenchymal stem cells with the potential for cell-mediated therapies and tissue engineering applications. We recently reported that isolation of dental pulp-derived stem cells (DPSC) is feasible for at least 120h after tooth extraction, and that cryopreservation of early passage cultured DPSC leads to high-efficiency recovery post-thaw. This study investigated additional processing and cryobiological characteristics of DPSC, ending with development of procedures for banking. First, we aimed to optimize cryopreservation of established DPSC cultures, with regards to optimizing the cryoprotective agent (CPA), the CPA concentration, the concentration of cells frozen, and storage temperatures. Secondly, we focused on determining cryopreservation characteristics of enzymatically digested tissue as a cell suspension. Lastly, we evaluated the growth, surface markers and differentiation properties of DPSC obtained from intact teeth and undigested, whole dental tissue frozen and thawed using the optimized procedures. In these experiments it was determined that Me(2)SO at a concentration between 1 and 1.5M was the ideal cryopreservative of the three studied. It was also determined that DPSC viability after cryopreservation is not limited by the concentration of cells frozen, at least up to 2x10(6) cells/mL. It was further established that DPSC can be stored at -85 degrees C or -196 degrees C for at least six months without loss of functionality. The optimal results with the least manipulation were achieved by isolating and cryopreserving the tooth pulp tissues, with digestion and culture performed post-thaw. A recovery of cells from >85% of the tissues frozen was achieved and cells isolated post-thaw from tissue processed and frozen with a serum free, defined cryopreservation medium maintained morphological and developmental competence and demonstrated MSC-hallmark trilineage differentiation under the appropriate culture conditions. ABSTRACT Se muestra que las células madre dentales pueden ser expandidas in-vitro para despues crío-preservarlas. Las células madre no pierden sus propiedades despúes de ser descongeladas. RESUMEN
Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. TÍTULO Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U, Palotás A, Kose GT. JOURNAL Pharmacogenomics J. 2010 Apr;10(2):105-13. Epub 2009 Sep 1. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL A number of studies have reported in the last decade that human tooth germs contain multipotent cells that give rise to dental and peri-odontal structures. The dental pulp, third molars in particular, have been shown to be a significant stem cell source. In this study, we isolated and characterized human tooth germ stem cells (hTGSCs) from third molars and assessed the expression of developmentally important transcription factors, such as oct4, sox2, klf4, nanog and c-myc, to determine their pluri-potency. Flow-cytometry analysis revealed that hTGSCs were positive for CD73, CD90, CD105 and CD166, but negative for CD34, CD45 and CD133, suggesting that these cells are mesenchymal-like stem cells. Under specific culture conditions, hTGSCs differentiated into osteogenic, adipogenic and neurogenic cells, as well as formed tube-like structures in Matrigel assay. hTGSCs showed significant levels of expression of sox2 and c-myc messenger RNA (mRNA), and a very high level of expression of klf4 mRNA when compared with human embryonic stem cells. This study reports for the first time that hTGSCs express developmentally important transcription factors that could render hTGSCs an attractive candidate for future somatic cell re-programming studies to differentiate germs into various tissue types, such as neurons and vascular structures. In addition, these multipotential hTGSCs could be important stem cell sources for autologous transplantation. ABSTRACT Se prueba que las células de la pulpa dental de los terceros molares son células madre mesenquimales que bajo condiciones controladas se pueden diferenciar en tejido osteogénico, adipogénico y neurogénico. Los terceros molares pueden ser una fuente ideal de células madre para transplantes autólogos. RESUMEN
Human dental pulp stem cells--isolation and long term cultivation. Suchánek J, Soukup T, Ivancaková R, Karbanová J, Hubková V, Pytlík R, Kucerová L. TÍTULO JOURNAL Cell Prolif. 2009 Oct;42(5):587-94. Epub 2009 Jul 14. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL Human adult mesenchymal stem cells (MSCs) are rare elements living in various organs (e.g. bone marrow, skeletal muscle), with capability to differentiate in various cell types (e.g. chondrocytes, adipocytes and osteoblasts). In the year 2000, Gronthos and co-workers isolated stem cells from the human dental pulp (DPSCs). Later on, stem cells from exfoliated tooth were also obtained. The aims of our study were to establish protocol of DPSCs isolation and to cultivate DPSCs either from adult or exfoliated tooth, and to compare these cells with mesenchymal progenitor cell (MPCs) cultures. MPCs were isolated from the human bone marrow of proximal femur. DPSCs were isolated from deciduous and permanent teeth. Both cell types were cultivated under the same conditions in the media with 2% of FCS supplemented with PDGF and EGF growth factors. We have cultivated undifferentiated DPSCs for long time, over 60 population doublings in cultivation media designed for bone marrow MPCs. After reaching Hayflick's limit, they still have normal karyotype. Initial doubling time of our cultures was from 12 to 50 hours for first 40 population doublings, after reaching 50 population doublings, doubling time had increased to 60-90 hours. Regression analysis of uncumulated population doublings proved tight dependence of population doublings on passage number and slow decrease of proliferation potential. In comparison with bone marrow MPCs, DPSCs share similar biological characteristics and stem cell properties. The results of our experiments proved that the DPSCs and MPCs are highly proliferative, clonogenic cells that can be expanded beyond Hayflick's limit and remain cytogenetically stable. Moreover we have probably isolated two different populations of DPSCs. These DPSCs lines differed one from another in morphology. Because of their high proliferative and differentiation potential, DPSCs can become more attractive, easily accessible source of adult stem cells for therapeutic purposes. ABSTRACT Se prueba que las células madre dentales se pueden multplicar varias generaciones sin perder su multipotencialidad. Gracias a esto, los dientes son considerados como una fuente ideal para la obtención de células madre adultas con fines terapéuticos. RESUMEN
Characterization of dental pulp stem cells of human tooth germs. TÍTULO Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, Miyaki S, Kunisada T, Shibata T, Tezuka K. JOURNAL J Dent Res. 2008 Jul;87(7):676-81. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL ABSTRACT In previous studies, human dental pulp stem cells (hDPSCs) were mainly isolated from adults. In this present study, we characterized hDPSCs isolated from an earlier developmental stage to evaluate the potential usage of these cells for tissue-regenerative therapy. hDPSCs isolated at the crown-completed stage showed a higher proliferation rate than those isolated at a later stage. When the cells from either group were cultured in medium promoting differentiation toward cells of the osteo/odontoblastic lineage, both became alkaline-phosphatase-positive, produced calcified matrix, and were also capable of forming dentin-like matrix on scaffolds in vivo. However, during long-term passage, these cells underwent a change in morphology and lost their differentiation ability. The results of a DNA array experiment showed that the expression of several genes, such as WNT16, was markedly changed with an increasing number of passages, which might have caused the loss of their characteristics as hDPSCs. Las células madre obtenidas de los terceros molares se pueden multiplicar en grandes cantidades y pueden formar tejido osteoblástico y odontobástico. Se comparan distintos niveles de proliferación celular. RESUMEN
Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. d'Aquino R, Tirino V, Desiderio V, Studer M, De Angelis GC, Laino L, De Rosa A, Di Nucci D, Martino S, Paino F, Sampaolesi M, Papaccio G. TÍTULO JOURNAL Eur Cell Mater. 2011 Mar 22;21:304-16. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL During human embryonic development, odontogenic tissues, deriving from the neural crest, remain undifferentiated until the adult age. This study was aimed at characterising the cells of the follicle enveloping the dental germ, due to its direct origin from neural crests. Sixty dental follicles were collected from patients aged 18 to 45 years. This research has clarified that dental follicles, if extracted in a very early stage, when dental roots did not start to be formed, contain a lineage of cells, characterised by a high degree of plasticity in comparison with other adult stem cell populations. In particular, we found that these cells share the following features with ES: (i) high levels of embryonic stem cell markers (CD90, TRA1-60, TRA1-81, OCT-4, CD133, and SSEA-4); (ii) mRNA transcripts for Nanog and Rex-1; (iii) broader potency, being able to differentiate in cell types of all three germ layer, including smooth and skeletal muscle, osteoblasts, neurons, glial cells, and adipocytes; (iv) high levels of telomerase activity; (v) ability to form embryoid bodies; (vi) ability, after injection in murine blastocysts, to be localised within the inner cell mass; (vii) no teratoma formation after injection; (viii) in vivo tissue formation after transplantation. Our results demonstrate that these cells represent a very easy accessible and extraordinary source of pluripotent cells and point out the fact that they own the cardinal feature of embryonic stem cells. ABSTRACT Las células madre obtenidas de los gérmenes dentales comparten varias características con las células madre embrionarias, como la pluripotencia. Ya que estas células son fácilmente accesibles y se multiplican en grandes cantidades son candidatos idóneos para la terapia regenerativa. RESUMEN
Stem cells from human exfoliated deciduous teeth--isolation, long term cultivation and phenotypical analysis. Suchánek J, Visek B, Soukup T, El-Din Mohamed SK, Ivancaková R, Mokrỳ J, Aboul-Ezz EH, Omran A. TÍTULO JOURNAL Acta Medica (Hradec Kralove). 2010;53(2):93-9. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL Aims: Our aims were to isolate stem cells from human exfoliated deciduous teeth (SHED), to cultivate them in vitro and to investigate their basic biological properties, phenotype and to compare our findings with dental pulp stem cells (DPSC) isolated from permanent teeth. Methods: Dental pulp was gently evacuated from exfoliated teeth. After enzymatic dissociation of dental pulp, SHED were cultivated in modified cultivation media for mesenchymal adult proge- nitor cells containing 2 % FCS and supplemented with growth factors and insulin, transferrin, sodium (ITS) supplement. Cell viability and other biological properties were examined using a Vi-Cell analyzer and a Z2-Counter. DNA analyses and phenotyping were performed with flow cytometry. Results: We were able to cultivate SHED over 45 population doublings. Our results showed that SHED cultivated under same conditions as DPSC had longer average population doubling time (41.3 hrs for SHED vs. 24.5 hrs for DPSC). Phenotypic comparison of cultivated SHED to that of cultivated DPSC showed differential expression CD29, CD44, CD71, CD117, CD166. During long-term cultivation, SHED did not showed any signs of degeneration or spontaneous differentiation. Conclusions: We isolated stem cells from exfoliated teeth. In comparison to DPSC, SHED proliferation rate was about 50% slower, and SHED showed slightly different phenotype. These cells may be extremely useful for stem cell tissue banking, further stem cell research and future therapeutic appli- cations. ABSTRACT RESUMEN Las células madre dentales se pueden aislar de los dientes de leche y de algunos dientes permanentes. Estas células puedes ser extremadamente útiles para su preservación y para futuras aplicaciones terapéuticas.
TÍTULO Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. Papaccio G, Graziano A, d'Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G. JOURNAL J Cell Physiol. 2006 Aug;208(2):319-25. Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL It is not known whether cells derived from stem cells retain their differentiation and morpho-functional properties after long-term cryopreservation. This information is of importance to evaluate their potential for long-term storage with a view to subsequent use in therapy. Here, we describe the morpho-functional properties of dental pulp stem cells (SBP-DPSCs), and of their differentiated osteoblasts, recovered after long-term cryopreservation. After storage for 2 years, we found that stem cells are still capable of differentiation, and that their differentiated cytotypes proliferate and produce woven bone tissue. In addition, cells still express all their respective surface antigens, confirming cellular integrity. In particular, SBP-DPSCs differentiated into pre-osteoblasts, showing diffuse positivity for ALP, BAP, RUNX-2, and calcein. Recovered osteoblasts expressed bone-specific markers and were easily recognizable ultrastructurally, with no alterations observed at this level. In addition, after in vivo transplantation, woven bone converted into a 3D lamellar bone type. Therefore, dental pulp stem cells and their osteoblast-derived cells can be long-term cryopreserved and may prove to be attractive for clinical applications. ABSTRACT Se crío-preservaron células madre dentales para evaluar que su potencialidad siga efectiva después de ser descongeladas. Después de 2 años de crío-preservación los científicos demostraron que las células madre dentales se podían seguir diferenciando en osteoblastos dando la posibilidad de preservar las células para un futuro uso clínico. RESUMEN
Isolation and in vitro characterisation of dental pulp stem cells from natal teeth Karaöz E, Doğan BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Genç ZS, Yürüker S,Duruksu G, Demircan PC, Sariboyaci AE. TÍTULO JOURNAL Histochem Cell Biol (2010) 133:95–112 Células Madre Mesenquimales de Origen Dental TRATAMIENTO POTENCIAL Dental pulp stem cells were primarily derived from the pulp tissues of exfoliated deciduous teeth, primary incisors and permanent third molar teeth. The aim of this study was to isolate and extensively characterise SCs derived from human natal dental pulp (hNDP). For characterisation, proliferation capacity, phenotypic properties, ultrastructural and differentiation characteristics and gene expression profiles were utilised. A comparison was done between the properties of NDP-SCs and the properties of mesenchymal stem cells (MSCs) from bone marrow (BM) of the human. Stem cells isolated from hNDP and hBM were analysed by flow cytometry, reverse transcriptase-PCR, Real Time-PCR, and immunocytochemistry. Both cell lines were directionally differentiated towards adipogenic, osteogenic chondrogenic, myogenic and neurogenic lineages. hNDP-SCs and hBM-MSCs expressed CD13, CD44, CD90, CD146 and CD166, but not CD3, CD8, CD11b, CD14, CD15, CD19, CD33, CD34, CD45, CD117, and HLA-DR. Ultrastructural characteristics of hNDP-SCs showed more developed and metabolically active cells. hNDP-SCs and hBM-MSCs expressed some adipogenic (leptin, adipophilin and PPARgamma), myogenic (desmin, myogenin, myosinIIa, and alpha-SMA), neurogenic (gamma-enolase, MAP2a,b, c-fos, nestin, NF-H, NF-L, GFAP and betaIII tubulin), osteogenic (osteonectin, osteocalcin, osteopontin, Runx-2, and type I collagen) and chondrogenic (type II collagen, SOX9) markers without any stimulation towards differentiation under basal conditions. Embryonic stem cell markers Oct4, Rex-1, FoxD-3, Sox2, and Nanog were also identified. The differentiation potential of hNDP-SCs and hBM-MSCs to adipogenic, osteogenic, chondrogenic, myogenic and neurogenic was shown. This report described the first successful isolation and characterisation of hNDP-SCs. ABSTRACT RESUMEN Se obtienen células madre de los dientes natales y se demuestra su capacidad de convertirse en tejido adipogénico, osteogénico, condrogénico, miogénico y neurogénico.
Regeneración Dental Resumen del Tema: Las células madre dentales se pueden diferenciar en tejidos dentales como la dentina y la pulpa abriendo la posibilidad de generar piezas dentales completas para reemplazar dientes perdidos y utilizar dientes biológicos en lugar de implantes artificiales. Asimismo, las células madre dentales se pueden utilizar para tratar problemas con tejidos dentales específicos como problemas relacionados a la dentina.
TÍTULO Bioengineered dental tissues grown in the rat jaw. Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. JOURNAL J Dent Res. 2008 Aug;87(8):745-50. TRATAMIENTO POTENCIAL Regeneración Dental Our long-term objective is to develop methods to form, in the jaw, bioengineered replacement teeth that exhibit physical properties and functions similar to those of natural teeth. Our results show that cultured rat tooth bud cells, seeded onto biodegradable scaffolds, implanted into the jaws of adult rat hosts and grown for 12 weeks, formed small, organized, bioengineered tooth crowns, containing dentin, enamel, pulp, and periodontal ligament tissues, similar to identical cell-seeded scaffolds implanted and grown in the omentum. Radiographic, histological, and immunohistochemical analyses showed that bioengineered teeth consisted of organized dentin, enamel, and pulp tissues. This study advances practical applications for dental tissue engineering by demonstrating that bioengineered tooth tissues can be regenerated at the site of previously lost teeth, and supports the use of tissue engineering strategies in humans, to regenerate previously lost and/or missing teeth. The results presented in this report support the feasibility of bioengineered replacement tooth formation in the jaw. ABSTRACT RESUMEN Utilizando las células madre dentales de una rata, se demuestra la viabilidad de formar dientes creados mediante la bioingeniería.
Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. TÍTULO JOURNAL J Dent Res. 2002 Oct;81(10):695-700. TRATAMIENTO POTENCIAL Regeneración Dental Tooth loss due to periodontal disease, dental caries, trauma, or a variety of genetic disorders continues to affect most adults adversely at some time in their lives. A biological tooth substitute that could replace lost teeth would provide a vital alternative to currently available clinical treatments. To pursue this goal, we dissociated porcine third molar tooth buds into single-cell suspensions and seeded them onto biodegradable polymers. After growing in rat hosts for 20 to 30 weeks, recognizable tooth structures formed that contained dentin, odontoblasts, a well-defined pulp chamber, putative Hertwig's root sheath epithelia, putative cementoblasts, and a morphologically correct enamel organ containing fully formed enamel. Our results demonstrate the first successful generation of tooth crowns from dissociated tooth tissues that contain both dentin and enamel, and suggest the presence of epithelial and mesenchymal dental stem cells in porcine third molar tissues. ABSTRACT Utilizando las células madre dentales porcinas se realiza la creación de un diente que contiene dentina y esmalte. Esto abre la posibilidad de crear dientes de bioingeniería para personas que requieren remplazar dientes perdidos. RESUMEN
Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Gronthos S, Mankani M,Brahim J, Robey PG,Shi S. TÍTULO JOURNAL Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13625-30. TRATAMIENTO POTENCIAL Regeneración Dental Dentinal repair in the postnatal organism occurs through the activity of specialized cells, odontoblasts, that are thought to be maintained by an as yet undefined precursor population associated with pulp tissue. In this study, we isolated a clonogenic, rapidly proliferative population of cells from adult human dental pulp. These DPSCs were then compared with human bone marrow stromal cells (BMSCs), known precursors of osteoblasts. Although they share a similar immunophenotype in vitro, functional studies showed that DPSCs produced only sporadic, but densely calcified nodules, and did not form adipocytes, whereas BMSCs routinely calcified throughout the adherent cell layer with clusters of lipid-laden adipocytes. When DPSCs were transplanted into immunocompromised mice, they generated a dentin-like structure lined with human odontoblast-like cells that surrounded a pulp-like interstitial tissue. In contrast, BMSCs formed lamellar bone containing osteocytes and surface-lining osteoblasts, surrounding a fibrous vascular tissue with active hematopoiesis and adipocytes. This study isolates postnatal human DPSCs that have the ability to form a dentin/pulp-like complex. ABSTRACT Las células madre dentales se pueden diferenciar en tejidos dentales como la dentina y la pulpa. Al lograr una reproducción rápida de las células, se sugiere la posibilidad de llegar a tratar problemas de la dentina en un futuro no muy distante. RESUMEN
TÍTULO The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. JOURNAL Orthod Craniofac Res. 2005 Aug;8(3):191-9. TRATAMIENTO POTENCIAL Regeneración Dental OBJECTIVES: Identification, characterization, and potential application of mesenchymal stem cells (MSC) derived from human dental tissues. RESULTS: MSC were identified in adult human dental pulp (dental pulp stem cells, DPSC), human primary teeth (stem cells from human exfoliated deciduous teeth, SHED), and periodontal ligament (periodontal ligament stem cells, PDLSC) by their capacity to generate clongenic cell clusters in culture. Ex vivo expanded DPSC, SHED, and PDLSC populations expressed a heterogeneous assortment of makers associated with MSC, dentin, bone, smooth muscle, neural tissue, and endothelium. PDLSC were also found to express the tendon specific marker, Scleraxis. Xenogeneic transplants containing HA/TCP with either DPSC or SHED generated donor-derived dentin-pulp-like tissues with distinct odontoblast layers lining the mineralized dentin-matrix. In parallel studies, PDLSC generated cementum-like structures associated with PDL-like connective tissue when transplanted with HA/TCP into immunocompromised mice. CONCLUSION: Collectively, these data revealed the presence of distinct MSC populations associated with dental structures with the potential of stem cells to regenerate living human dental tissues in vivo. ABSTRACT Las células madre dentales pueden ser utilizadas para regenerar tejidos dentales in-vivo. RESUMEN
Dental tissue regeneration - a mini-review. Yen AH, Yelick PC. TÍTULO JOURNAL Gerontology. 2011;57(1):85-94. Epub 2010 May 6. TRATAMIENTO POTENCIAL Regeneración Dental OBJECTIVE: in this review, we summarize the emerging concepts of whole-tooth replacement strategies, using postnatal dental stem cells (DSCs) and dental tissue engineering approaches. RESULTS: current approaches to achieve clinically relevant biological replacement tooth therapies rely on the cultivation of DSCs capable of relaying odontogenic induction signals, through dental epithelial-mesenchymal cell interactions. DSC expansion and differentiation can be achieved by programming progenitor stem cells to adopt dental lineages, using instructive, bioengineered scaffold materials. Periodontal ligament regeneration in particular has demonstrated significant progress recently, despite the somewhat unpredictable clinical outcomes, with regard to its capacity to augment conventional metallic dental implants and as an important component for whole-tooth tissue engineering. Following recent advances made in DSC and tissue engineering research, various research groups are in the midst of performing 'proof of principle' experiments for whole-tooth regeneration, with associated functional periodontal tissues. This mini-review focuses on recent and promising developments in the fields of pulp and periodontal tissue DSCs that are of particular relevance for dental tissue and whole-tooth regeneration. CONCLUSION: continued advances in the derivation of useable DSC populations and optimally designed scaffold materials unequivocally support the feasibility of dental tissue and whole-tooth tissue engineering. ABSTRACT Los avances en las investigaciones con células madre dentales y los andamios óptimos soportan la viabilidad de regenerar dientes enteros mediante la ingeniería de tejidos. RESUMEN
Dental pulp stem cells in regenerative dentistry. Casagrande L, Cordeiro MM,Nör SA, Nör JE. TÍTULO JOURNAL Odontology. 2011 Jan;99(1):1-7. Epub 2011 Jan 27. TRATAMIENTO POTENCIAL Regeneración Dental Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry. ABSTRACT Las células madre dentales son la fuente más accesible de células madre. Éstas tienen las características de mulipotencialidad y se reproducen en grandes cantidades por lo que son una fuente ideal para la regeneración de tejidos. RESUMEN
Dental pulp tissue engineering. Demarco FF, Conde MC, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. TÍTULO JOURNAL Braz Dent J. 2011;22(1):3-13. TRATAMIENTO POTENCIAL Regeneración Dental Dental pulp is a highly specialized mesenchymal tissue that has a limited regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that has demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article reviews the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and provides insightful information to readers about the different aspects involved in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The findings collected in this literature review show that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable goal and the next decade will certainly be an exciting time for dental and craniofacial research. ABSTRACT Después de una exhaustiva revisión de literatura se determina que la regeneración de estructuras complejas como los dientes ya no es un fin inalcanzable. RESUMEN
Regeneración Huesos y Estructura Craneofacial • Resumen del Tema: • Las células madre dentales pueden ser diferenciadas en osteblastos (células óseas) y pueden ser utilizadas para corregir defectos craneofaciales. • Al combinar las células madre con matrices de colágena se ha demostrado que las heridas y los defectos craneofaciales pueden ser corregidos de forma más rápida y con estructuras óseas mejor formadas que esperando la regeneración natural de los tejidos.
Craniofacial tissue engineering by stem cells. Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH,Longaker MT, Shi S. TÍTULO JOURNAL J Dent Res. 2006 Nov;85(11):966-79. TRATAMIENTO POTENCIAL Regeneración Huesos y Estructura Craneofacial ABSTRACT Craniofacial tissue engineering promises the regeneration or de novo formation of dental, oral, and craniofacial structures lost to congenital anomalies, trauma, and diseases. Virtually all craniofacial structures are derivatives of mesenchymal cells. Mesenchymal stem cells are the offspring of mesenchymal cells following asymmetrical division, and reside in various craniofacial structures in the adult. Cells with characteristics of adult stem cells have been isolated from the dental pulp, the deciduous tooth, and the periodontium. Several craniofacial structures--such as the mandibular condyle, calvarial bone, cranial suture, and subcutaneous adipose tissue--have been engineered from mesenchymal stem cells, growth factor, and/or gene therapy approaches. As a departure from the reliance of current clinical practice on durable materials such as amalgam, composites, and metallic alloys, biological therapies utilize mesenchymal stem cells, delivered or internally recruited, to generate craniofacial structures in temporary scaffolding biomaterials. Craniofacial tissue engineering is likely to be realized in the foreseeable future, and represents an opportunity that dentistry cannot afford to miss. Todas las estructuras craneofaciales son derivadas del tejido mesenquimal. Las células madre dentales pueden regenerar varios tejidos craneofaciales por lo que pueden representar un significativo avance en la odonotología regenerativa. RESUMEN
The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Mangano C, De Rosa A, Desiderio V, d'Aquino R, Piattelli A, De Francesco F, Tirino V, Mangano F, Papaccio G. TÍTULO JOURNAL Biomaterials. 2010 May;31(13):3543-51. Epub 2010 Feb 1. TRATAMIENTO POTENCIAL Regeneración Huesos y Estructura Craneofacial ABSTRACT Bone Tissue Engineering (BTE) and Dental Implantology (DI) require the integration of implanted structures, with well characterized surfaces, in bone. In this work we have challenged acid-etched titanium (AET) and Laser Sintered Titanium (LST) surfaces with either human osteoblasts or stem cells from human dental pulps (DPSCs), to understand their osteointegration and clinical use capability of derived implants. DPSCs and human osteoblasts were challenged with the two titanium surfaces, either in plane cultures or in a roller apparatus within a culture chamber, for hours up to a month. During the cultures cells on the titanium surfaces were examined for histology, protein secretion and gene expression. Results show that a complete osteointegration using human DPSCs has been obtained: these cells were capable to quickly differentiate into osteoblasts and endotheliocytes and, then, able to produce bone tissue along the implant surfaces. Osteoblast differentiation of DPSCs and bone morphogenetic protein production was obtained in a better and quicker way, when challenging stem cells with the LST surfaces. This successful BTE in a comparatively short time gives interesting data suggesting that LST is a promising alternative for clinical use in DI. Las células madre dentales se pueden utilizar para la regeneración de hueso por lo que presentan un gran potencial para revolucionar la implantología dental. RESUMEN
Dental pulp stem cells: a promising tool for bone regeneration. Graziano A, d'Aquino R, Laino G,Papaccio G. TÍTULO JOURNAL Stem Cell Rev. 2008 Spring;4(1):21-6. TRATAMIENTO POTENCIAL Regeneración Huesos y Estructura Craneofacial Human tissues are different in term of regenerative properties. Stem cells are a promising tool for tissue regeneration, thanks to their particular characteristics of proliferation, differentiation and plasticity. Several "loci" or "niches" within the adult human body are colonized by a significant number of stem cells. However, access to these potential collection sites often is a limiting point. The interaction with biomaterials is a further point that needs to be considered for the therapeutic use of stem cells. Dental pulp stem cells (DPSCs) have been demonstrated to answer all of these issues: access to the collection site of these cells is easy and produces very low morbidity; extraction of stem cells from pulp tissue is highly efficiency; they have an extensive differentiation ability; and the demonstrated interactivity with biomaterials makes them ideal for tissue reconstruction. SBP-DPSCs are a multipotent stem cell subpopulation of DPSCs which are able to differentiate into osteoblasts, synthesizing 3D woven bone tissue chips in vitro and that are capable to synergically differentiate into osteoblasts and endotheliocytes. Several studied have been performed on DPSCs and they mainly found that these cells are multipotent stromal cells that can be safety cryopreserved, used with several scaffolds, that can extensively proliferate, have a long lifespan and build in vivo an adult bone with Havers channels and an appropriate vascularization. A definitive proof of their ability to produce dentin has not been yet done. Interestingly, they seem to possess immunoprivileges as they can be grafted into allogenic tissues and seem to exert anti-inflammatory abilities, like many other mesenchymal stem cells. The easy management of dental pulp stem cells make them feasible for use in clinical trials on human patients. ABSTRACT Las células madre dentales son una herramienta prometedora para la regeneración de huesos y la facilidad de utilizarlas las hace candidatas idóneas para protocolos experimentales en humanos. RESUMEN
Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. de Mendonça Costa A, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, Cerruti H, Alonso N, Passos-Bueno MR TÍTULO JOURNAL J Craniofac Surg. 2008 Jan;19(1):204-10. TRATAMIENTO POTENCIAL Regeneración Huesos y Estructura Craneofacial The main aim of this study is to evaluate the capacity of human dental pulp stem cells (hDPSC), isolated from deciduous teeth, to reconstruct large-sized cranial bone defects in nonimmunosuppressed (NIS) rats. To our knowledge, these cells were not used before in similar experiments. We performed two symmetric full-thickness cranial defects (5 x 8 mm) on each parietal region of eight NIS rats. In six of them, the left side was supplied with collagen membrane only and the right side (RS) with collagen membrane and hDPSC. In two rats, the RS had collagen membrane only and nothing was added at the left side (controls). Cells were used after in vitro characterization as mesenchymal cells. Animals were euthanized at 7, 20, 30, 60, and 120 days postoperatively and cranial tissue samples were taken from the defects for histologic analysis. Analysis of the presence of human cells in the new bone was confirmed by molecular analysis. The hDPSC lineage was positive for the four mesenchymal cell markers tested and showed osteogenic, adipogenic, and myogenic in vitro differentiation. We observed bone formation 1 month after surgery in both sides, but a more mature bone was present in the RS. Human DNA was polymerase chain reaction-amplified only at the RS, indicating that this new bone had human cells. The use of hDPSC in NIS rats did not cause any graft rejection. Our findings suggest that hDPSC is an additional cell resource for correcting large cranial defects in rats and constitutes a promising model for reconstruction of human large cranial defects in craniofacial surgery. ABSTRACT Las células madre dentales pueden ser utilizadas para corregir grandes defectos craneofaciales en ratas por lo que constituyen un modelo prometedor para la reconstrucción de problemas craneofaciales en humanos. RESUMEN
Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. d'Aquino R, De Rosa A,Lanza V,Tirino V, Laino L, Graziano A, Desiderio V, Laino G, Papaccio G. TÍTULO JOURNAL Eur Cell Mater. 2009 Nov 12;18:75-83. TRATAMIENTO POTENCIAL Regeneración Huesos y Estructura Craneofacial In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs) and a collagen sponge scaffold for oro-maxillo-facial (OMF) bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs. ABSTRACT Este estudio demuestra que las células madre dentales y las matrices de colágena pueden corregir completamente los defectos de la mandíbula así como de otros tejidos y órganos. RESUMEN
Regeneración Cardiaca Resumen del Tema: Las células madre de origen dental tienen la posibilidad de diferenciarse en células cardiacas (cardiomiocitos). Esta cualidad sugiere que las células madre dentales se pueden usar en tratamientos regenerativos de corazón después de un infarto. De la misma forma, las células mesenquimales de los dientes pueden jugar un papel clave en la generación de válvulas cardiacas para uso humano.
Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepúlveda P. TÍTULO JOURNAL Stem Cells. 2008 Mar;26(3):638-45. Epub 2007 Dec 13. TRATAMIENTO POTENCIAL Regeneración Cardiaca Human dental pulp contains precursor cells termed dental pulp stem cells (DPSC) that show self-renewal and multilineage differentiation and also secrete multiple proangiogenic and antiapoptotic factors. To examine whether these cells could have therapeutic potential in the repair of myocardial infarction (MI), DPSC were infected with a retrovirus encoding the green fluorescent protein (GFP) and expanded ex vivo. Seven days after induction of myocardial infarction by coronary artery ligation, 1.5 x 10(6) GFP-DPSC were injected intramyocardially in nude rats. At 4 weeks, cell-treated animals showed an improvement in cardiac function, observed by percentage changes in anterior wall thickening left ventricular fractional area change, in parallel with a reduction in infarct size. No histologic evidence was seen of GFP+ endothelial cells, smooth muscle cells, or cardiac muscle cells within the infarct. However, angiogenesis was increased relative to control-treated animals. Taken together, these data suggest that DPSC could provide a novel alternative cell population for cardiac repair, at least in the setting of acute MI. ABSTRACT Se utilizaron células madre dentales para tratar un infarto cardiaco en ratas. Al revisar los resultados, se sugiere que las células madre dentales podrían ser una buena alternativa para la regeneración de corazones que han sufrido infartos. RESUMEN
Problemas Neurológicos • Resumen del Tema: • Las células madre dentales producen factores neurotróficos y pueden reparar lesiones de médula espinal. • Las células madre dentales se pueden diferenciar en el laboratorio y formar neuronas activas y funcionales. • Las células dentales son capaces de migrar a las zonas afectadas del cerebro, inducir la vascularización y mejorar la isquemia cerebral. • Las células madre dentales fueron diferenciadas en tejidos de lineaje neural y mostraron propiedades de protección a las neuronas dopaminérgicos por lo que presentan una posibilidad para tratar enfermedades neurodegenerativas como el Mal de Parkinson. • Las células madre dentales mantienen su potencial de neuro-protección después de la crío-preservación de largo plazo.
Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Nosrat IV, Widenfalk J, Olson L, Nosrat CA. TÍTULO JOURNAL Dev Biol. 2001 Oct 1;238(1):120-32. TRATAMIENTO POTENCIAL Problemas Neurológicos Interactions between ingrowing nerve fibers and their target tissues form the basis for functional connectivity with the central nervous system. Studies of the developing dental pulp innervation by nerve fibers from the trigeminal ganglion is an excellent example of nerve-target tissue interactions and will allow specific questions regarding development of the dental pulp nerve system to be addressed. Dental pulp cells (DPC) produce an array of neurotrophic factors during development, suggesting that these proteins might be involved in supporting trigeminal nerve fibers that innervate the dental pulp. We have established an in vitro culture system to study the interactions between the dental pulp cells and trigeminal neurons. We show that dental pulp cells produce several neurotrophic factors in culture. When DPC are cocultured with trigeminal neurons, they promote survival and a specific and elaborate neurite outgrowth pattern from trigeminal neurons, whereas skin fibroblasts do not provide a similar support. In addition, we show that dental pulp tissue becomes innervated when transplanted ectopically into the anterior chamber of the eye in rats, and upregulates the catecholaminergic nerve fiber density of the irises. Interestingly, grafting the dental pulp tissue into hemisected spinal cord increases the number of surviving motoneurons, indicating a functional bioactivity of the dental pulp-derived neurotrophic factors in vivo by rescuing motoneurons. Based on these findings, we propose that dental pulp-derived neurotrophic factors play an important role in orchestrating the dental pulp innervation. ABSTRACT Las células madre dentales producen factores neurotróficos y pueden reparar lesiones de médula espinal. RESUMEN
Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Király M, Porcsalmy B, Pataki A, Kádár K, Jelitai M, Molnár B, Hermann P, Gera I, Grimm WD, Ganss B, Zsembery A, Varga G. TÍTULO JOURNAL Neurochem Int. 2009 Sep;55(5):323-32. Epub 2009 Apr 5. TRATAMIENTO POTENCIAL Problemas Neurológicos The plasticity of dental pulp stem cells (DPSCs) has been demonstrated by several studies showing that they appear to self-maintain through several passages, giving rise to a variety of cells. The aim of the present study was to differentiate DPSCs to mature neuronal cells showing functional evidence of voltage gated ion channel activities in vitro. First, DPSC cultures were seeded on poly-l-lysine coated surfaces and pretreated for 48h with a medium containing basic fibroblast growth factor and the demethylating agent 5-azacytidine. Then neural induction was performed by the simultaneous activation of protein kinase C and the cyclic adenosine monophosphate pathway. Finally, maturation of the induced cells was achieved by continuous treatment with neurotrophin-3, dibutyryl cyclic AMP, and other supplementary components. Non-induced DPSCs already expressed vimentin, nestin, N-tubulin, neurogenin-2 and neurofilament-M. The inductive treatment resulted in decreased vimentin, nestin, N-tubulin and increased neurogenin-2, neuron-specific enolase, neurofilament-M and glial fibrillary acidic protein expression. By the end of the maturation period, all investigated genes were expressed at higher levels than in undifferentiated controls except vimentin and nestin. Patch clamp analysis revealed the functional activity of both voltage-dependent sodium and potassium channels in the differentiated cells. Our results demonstrate that although most surviving cells show neuronal morphology and express neuronal markers, there is a functional heterogeneity among the differentiated cells obtained by the in vitro differentiation protocol described herein. Nevertheless, this study clearly indicates that the dental pulp contains a cell population that is capable of neural commitment by our three step neuroinductive protocol. ABSTRACT Las células madre dentales se pueden diferenciar en el laboratorio y formar neuronas activas y funcionales. RESUMEN
Human tooth germ stem cells preserve neuro-protective effects after long-term cryo-preservation. Yalvaç ME, Ramazanoglu M, Tekguc M, Bayrak OF, Shafigullina AK, Salafutdinov II, Blatt NL, Kiyasov AP, Sahin F, Palotás A, Rizvanov AA. TÍTULO JOURNAL Curr Neurovasc Res. 2010 Feb 1;7(1):49-58. TRATAMIENTO POTENCIAL Problemas Neurológicos The use of mesenchymal stem cells (MSCs) has been shown to be promising in chronic disorders such as diabetes, Alzheimer's dementia, Parkinson's disease, spinal cord injury and brain ischemia. Recent studies revealed that human tooth germs (hTG) contain MSCs which can be easily isolated, expanded and cryo-preserved. In this report, we isolated human tooth germ stem cells (hTGSCs) with MSC characteristics from third molar tooth germs, cryo-preserved them at -80( degrees )C for 6 months, and evaluated for their surface antigens, expression of pluri-potency associated genes, differentiation capacity, karyotype, and proliferation rate. These characteristics were compared to their non-frozen counterparts. In addition, neuro-protective effects of cryo-preserved cells on neuro-blastoma SH-SY5Y cells were also assessed after exposure to stress conditions induced by hydrogen-peroxide (oxidative stress) and paclitaxel (microtubule stabilizing mitotic inhibitor). After long term cryo-preservation hTGSCs expressed surface antigens CD29, CD73, CD90, CD105, and CD166, but not CD34, CD45 or CD133, which was typical for non-frozen hTGSCs. Cryo-preserved hTGSCs were able to differentiate into osteo-, adipo- and neuro-genic cells. They also showed normal karyotype after high number of population doublings and unchanged proliferation rate. On the other hand, cryo-preserved cells demonstrated a tendency for lower level of pluri-potency associated gene expression (nanog, oct4, sox2, klf4, c-myc) than non-frozen hTGSCs. hTGSCs conditioned media increased survival of SH-SY5Y cells exposed to oxidative stress or paclitaxel. These findings confirm that hTGSCs preserve their major characteristics and exert neuro-protection after long-term cryo-preservation, suggesting that hTGSCs, harvested from young individuals and stored for possible use later as they grow old, might be employed in cellular therapy of age-related degenerative disorders. ABSTRACT Las células madre dentales mantienen su potencial de neuro-protección después de la crío-preservación de largo plazo. Esto sugiere que sería recomendable preservar las células madre de los niños para un posible uso futuro en enfermedades degenerativas relacionadas con la edad. RESUMEN
Dental Pulp-Derived CD31(-)/CD146(-) Side Population Stem/Progenitor Cells Enhance Recovery of Focal Cerebral Ischemia in Rats. Sugiyama M, Iohara K, Wakita H, Hattori H, Ueda M, Matsushita K, Nakashima M. TÍTULO JOURNAL Tissue Eng Part A. 2011 May;17(9-10):1303-11. Epub 2011 Feb 25. TRATAMIENTO POTENCIAL Problemas Neurológicos ABSTRACT Regenerative therapy using stem cells is a promising approach for the treatment of stroke. Recently, we reported that CD31(-)/CD146(-) side population (SP) cells from porcine dental pulp exhibit highly vasculogenic potential in hindlimb ischemia. In this study, we investigated the influence of CD31(-)/CD146(-) SP cells after transient middle cerebral artery occlusion (TMCAO). Adult male Sprague-Dawley rats were subjected to 2 h of TMCAO. Twenty-four hours after TMCAO, CD31(-)/CD146(-) SP cells were transplanted into the brain. Motor function and infarct volume were evaluated. Neurogenesis and vasculogenesis were determined with immunochemical markers, and the levels of neurotrophic factors were assayed with real-time reverse transcription-polymerase chain reaction. In the cell transplantation group, the number of doublecortin-positive cells increased twofold, and the number of NeuN-positive cells increased eightfold, as compared with the control phosphate-buffered saline group. The vascular endothelial growth factor level in the ischemic brain with transplanted cells was 28 times higher than that in the normal brain. In conclusion, CD31(-)/CD146(-) SP cells promoted migration and differentiation of the endogenous neuronal progenitor cells and induced vasculogenesis, and ameliorated ischemic brain injury after TMCAO. Células madre dentales fueron transplantas en ratas con isquemia cerebral. Las células fueron capaces de migrar a las zonas afectadas del cerebro, inducir la vascularización y mejoraron la isquemia cerebral. RESUMEN
Implanted adult human dental pulp stem cells induce endogenous axon guidance. Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA. TÍTULO JOURNAL Stem Cells. 2009 Sep;27(9):2229-37. TRATAMIENTO POTENCIAL Problemas Neurológicos ABSTRACT The human central nervous system has limited capacity for regeneration. Stem cell-based therapies may overcome this through cellular mechanisms of neural replacement and/or through molecular mechanisms, whereby secreted factors induce change in the host tissue. To investigate these mechanisms, we used a readily accessible human cell population, dental pulp progenitor/stem cells (DPSCs) that can differentiate into functionally active neurons given the appropriate environmental cues. We hypothesized that implanted DPSCs secrete factors that coordinate axon guidance within a receptive host nervous system. An avian embryonic model system was adapted to investigate axon guidance in vivo after transplantation of adult human DPSCs. Chemoattraction of avian trigeminal ganglion axons toward implanted DPSCs was mediated via the chemokine, CXCL12, also known as stromal cell-derived factor-1, and its receptor, CXCR4. These findings provide the first direct evidence that DPSCs may induce neuroplasticity within a receptive host nervous system. Las células madre dentales tienen el potencial de generar neuronas activas y pueden inducir la neuroplasticidad en el sistema nervioso. RESUMEN
Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Huang AH, Snyder BR, Cheng PH, Chan AW. TÍTULO JOURNAL Stem Cells. 2008 Oct;26(10):2654-63. Epub 2008 Aug 7. TRATAMIENTO POTENCIAL Problemas Neurológicos Until now, interest in dental pulp stem/stromal cell (DPSC) research has centered on mineralization and tooth repair. Beginning a new paradigm in DPSC research, we grafted undifferentiated, untreated DPSCs into the hippocampus of immune-suppressed mice. The rhesus DPSC (rDPSC) line used was established from the dental pulp of rhesus macaques and found to be similar to human bone marrow/mesenchymal stem cells, which express Nanog, Rex-1, Oct-4, and various cell surface antigens, and have multipotent differentiation capability. Implantation of rDPSCs into the hippocampus of mice stimulated proliferation of endogenous neural cells and resulted in the recruitment of pre-existing Nestin(+) neural progenitor cells (NPCs) and beta-tubulin-III(+) mature neurons to the site of the graft. Additionally, many cells born during the first 7 days after implantation proliferated, forming NPCs and neurons, and, to a lesser extent, underwent astrogliosis, forming astrocytes and microglia, by 30 days after implantation. Although the DPSC graft itself was short term, it had long-term effects by promoting growth factor signaling. Implantation of DPSCs enhanced the expression of ciliary neurotrophic factor, vascular endothelial growth factor, and fibroblast growth factor for up to 30 days after implantation. In conclusion, grafting rDPSCs promotes proliferation, cell recruitment, and maturation of endogenous stem/progenitor cells by modulating the local microenvironment. Our results suggest that DPSCs have a valuable, unique therapeutic potential, specifically as a stimulator and modulator of the local repair response in the central nervous system. DPSCs would be a preferable cell source for therapy due to the possibility of a "personalized" stem cell, avoiding the problems associated with host immune rejection. Disclosure of potential conflicts of interest is found at the end of this article. ABSTRACT Las células madre dentales promueven la proliferación y diferenciación de células neurales y son buenas candidatas para la “terapia personalizada” ya que evitan los problemas de rechazo. RESUMEN
Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Király M, Kádár K,Horváthy DB, Nardai P, Rácz GZ, Lacza Z, Varga G, Gerber G. TÍTULO JOURNAL Neurochem Int. 2011 Jan 8. TRATAMIENTO POTENCIAL Problemas Neurológicos Pluripotency and their neural crest origin make dental pulp stem cells (DPSCs) an attractive donor source for neuronal cell replacement. Despite recent encouraging results in this field, little is known about the integration of transplanted DPSC derived neuronal pecursors into the central nervous system. To address this issue, neuronally predifferentiated DPSCs, labeled with a vital cell dye Vybrant DiD were introduced into postnatal rat brain. DPSCs were transplanted into the cerebrospinal fluid of 3-day-old male Wistar rats. Cortical lesion was induced by touching a cold (-60°C) metal stamp to the calvaria over the forelimb motor cortex. Four weeks later cell localization was detected by fluorescent microscopy and neuronal cell markers were studied by immunohistochemistry. To investigate electrophysiological properties of engrafted, fluorescently labeled DPSCs, 300μm-thick horizontal brain slices were prepared and the presence of voltage-dependent sodium and potassium channels were recorded by patch clamping. Predifferentiated donor DPSCs injected into the cerebrospinal fluid of newborn rats migrated as single cells into a variety of brain regions. Most of the cells were localized in the normal neural progenitor zones of the brain, the subventricular zone (SVZ), subgranular zone (SGZ) and subcallosal zone (SCZ). Immunohistochemical analysis revealed that transplanted DPSCs expressed the early neuronal marker N-tubulin, the neuronal specific intermediate filament protein NF-M, the postmitotic neuronal marker NeuN, and glial GFAP. Moreover, the cells displayed TTX sensitive voltage dependent (VD) sodium currents (I(Na)) and TEA sensitive delayed rectifier potassium currents (K(DR)). Four weeks after injury, fluorescently labeled cells were detected in the lesioned cortex. Neurospecific marker expression was increased in DPSCs found in the area of the cortical lesions compared to that in fluorescent cells of uninjured brain. TTX sensitive VD sodium currents and TEA sensitive K(DR) significantly increased in labeled cells of the cortically injured area. In conclusion, our data demonstrate that engrafted DPSC-derived cells integrate into the host brain and show neuronal properties not only by expressing neuron-specific markers but also by exhibiting voltage dependent sodium and potassium channels. This proof of concept study reveals that predifferentiated hDPSCs may serve as useful sources of neuro- and gliogenesis in vivo, especially when the brain is injured. ABSTRACT Los resultados del estudio muestran que las células madre dentales transplantadas In-Vivo tienen propiedades neuronales importantes que pueden reparar cerebros que estan lastimados. RESUMEN
Differentiation of dental pulp stem cells into a neural lineage Masaharu Takeyasu1), Tadashige Nozaki2) and Michiharu Daito1) TÍTULO JOURNAL Pediatric Dental Journal - Vol. 16 (2006) , No. 2 pp.154-162 TRATAMIENTO POTENCIAL Problemas Neurológicos We previously investigated whether dental pulp-derived cells possess similar pluripotency to bone marrow cells, and reported their capacity to differentiate into osteoblasts, as well as the characteristics of the stem cells present in dental pulp. In the present study, we hypothesized that neural stem cells would also exist in rat dental pulp, similar to bone marrow and the brain, and attempted to induce their differentiation into a neural lineage by applying an in vitro study design previously reported to induce differentiation of human bone marrow cells. Before inducing differentiation, we detected cells expressing nestin (Nes), which is known to be a marker for neural stem cells, within primary cultures of rat dental pulp-derived cells, suggesting the existence of neural stem cells in dental pulp. Quantitative analyses of the mRNA and protein expression levels revealed downregulation of both the Nes mRNA and protein levels to about 68.1% and 12.4%, respectively, after the induction of differentiation compared to the corresponding levels before induction. Conversely, the glial fibrillary acidic protein (Gfap) mRNA level was elevated by 1.3-fold after the induction of differentiation compared with the level before induction. The reduced number of Nes-positive cells and decreased Nes mRNA and protein levels after the induction of differentiation may be attributed to differentiation of neural stem cells into a neural lineage. Moreover, the increased number of Gfap-positive cells and increased Gfap mRNA level after the induction of differentiation most likely support their progressive differentiation into a glial cell lineage, since Gfap is a marker that is upregulated in glial cells. Our present data demonstrate the existence of neural stem cells in tissues other than the central nervous system, and may represent a significant step toward providing more diverse and multiple sources of stem cells for future regenerative medicine. ABSTRACT RESUMEN Las células madre dentales fueron diferenciadas en tejidos de lineaje neural por lo que pueden ayudar en tratamientos de medicina regenerativa.
TÍTULO Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Nesti C, Pardini C, Barachini S, D'Alessandro D, Siciliano G, Murri L, Petrini M, Vaglini F. JOURNAL Brain Res. 2011 Jan 7;1367:94-102. Epub 2010 Sep 18. TRATAMIENTO POTENCIAL Problemas Neurológicos Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive death of substantia nigra dopaminergic neurons that results in a regional loss of striatal dopamine (DA) levels. Dental pulp contains ex vivo-expandable cells called dental pulp stem cells (DPSCs), with the capacity to differentiate into multiple cell lineages. More interestingly, due to their embryonic origin, DPSCs express neurotrophic factors such as brain-derived neurotrophic factor, nerve growth factor and glial cell-derived neurotrophic factor. The aim of the present study was to investigate the neuroprotective effects of DPSCs against MPP+ (2.5, 5, and 10 μM) and rotenone (0.25, 0.5 and 1 μM) in an in vitro model of PD, using an indirect co-culture system with mesencephalic cell cultures. When mesencephalic cultures were challenged with MPP+ or rotenone, in the presence of DPSCs a statistically significant protective effect was observed at all the tested doses in terms of DA uptake. DPSCs protective effect on DA neurons was also confirmed by immunocytochemistry: an increased number of spared tyrosine hydroxylase (TH)+ cells was observed in co-culture conditions compared to controls, and neurons showed longer processes in comparison with mesencephalic cells grown without DPSCs. In conclusion, the co-culture with DPSCs significantly attenuated MPP+ or rotenone-induced toxicity in primary cultures of mesencephalic neurons. Considering that the direct contact between the two cell types was prevented, it can be speculated that neuroprotection could be due to soluble factors such as BDNF and NGF, released by DPSCs. Blocking BDNF and NGF with neutralizing antibodies, the neuroprotecting effect of DPSCs was completely abolished. Therefore DPSCs can be viewed as possible candidates for studies on cell-based therapy in neurodegenerative disorders. ABSTRACT RESUMEN Las células madre dentales fueron diferenciadas en tejidos de lineaje neural y mostraron propiedades de protección a las neuronas dopaminérgicos por lo que presentan una posibilidad para tratar enfermedades neurodegenerativas como el Mal de Parkinson.