1 / 21

Capability of optical code-based MPLS (OC-MPLS)

Capability of optical code-based MPLS (OC-MPLS). K. Kitayama, K.Onohara, and M. Murata Osaka University, Japan E-mail: kitayama@comm.eng.osaka - u.ac.jp. Outline. Motivations for optical-code based (OC)-MPLS OC-photonic labels and their ultra-fast processing capability

bina
Download Presentation

Capability of optical code-based MPLS (OC-MPLS)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Capability of optical code-based MPLS (OC-MPLS) K. Kitayama, K.Onohara, and M. Murata Osaka University, Japan E-mail: kitayama@comm.eng.osaka-u.ac.jp ONDM2002 K. Kitayama

  2. Outline • Motivations for optical-code based (OC)-MPLS • OC-photonic labels and their ultra-fast processing capability • Versatile applications to; • LSP switching • Flow/packet classification for diffserv ONDM2002 K. Kitayama

  3. In Label Out Label l l10 133.1.12.14 In Label In Label Out Label Out Label l4 l10 133.1.12.14 l10 l4 133.1.12.4 MPL(ambda)S or MPlS Core PLSR 133.1.12.14 Egress PLSR Ingress PLSR ONDM2002 K. Kitayama

  4. In Label Out Label OC-PL4 OC-PL10 Core PLSR 133.1.12.14 Egress PLSR Ingress PLSR 133.1.12.14 In Label In Label Out Label Out Label OC 10 OC 4 133.1.12.14 OC-PL10 OC-PL4 133.1.12.4 Optical-code based MPLS M. Murata and K. Kitayama, IEEE Network Magazine., vol.15, pp.56-63, July/Aug. 2001. ONDM2002 K. Kitayama

  5. Wavelength path l1 l2 l3 10Gb/s OP1 t 10Gb/s OP2 t 10Gb/s OP3 t Optical code path l1 OC1 OC2 OC3 t 10Gb/s OP1&2&3 Granularity issue : Bandwidth efficie(curre)ncy ONDM2002 K. Kitayama

  6. Wavelength resource for MPlS : Photonic label space Number of addresses Table lookup Disadvantages Simple Optical filter 〜1,000 (〜 210) May not large enough Flow merge impossible Wavelength Milimeter-wave filter May not large enough < 40Gb/s Subcarrier (m-wave) 〜100 Ultra-fast Passive device As many as label count Impairments in propagation Optical codes Abundant ONDM2002 K. Kitayama

  7. Opaque(O-E-O) Opaque(O-E-O) Transparent O-O-O Transparent O-O-O How fast label processings do we need? Data granularity Stream Burst Packet nsec msec msec min Data granularity / 20 (Hop accounts) nsec min msec msec Data granularity / 20 (Hop accounts) / Processing steps (10) Processing speed/hop/step min nsec msec msec ONDM2002 K. Kitayama

  8. Optical correlation: A technique to recognize OC-photonic labels -1- Auto-correlation Auto-correlation Cross-correlation Optical code j Optical code i 00p 0p0p t t t t Cross-correlation Cross-correlation Optical code k 0pp0 t t t Optical correlation in time-domain indicates how orthogonal two codes are. Matched codes : Auto-correl. Unmatched codes : Cross-correl. Auto-correlation t ONDM2002 K. Kitayama

  9. Optical correlation: A technique to recognize OC-photonic labels -2- 8-chip bipolar OC-photonic label@10Gb/s Auto-correlation: Label match Optical endoder Optical correlator Cross-correlation: Label unmatch Proccessing speed is only limited by the light velocity!!! No optical logic devices but passive waveguide devices!!! K. Kitayama, N. Wada, and H. Sotobayashi, IEEE J. Lightwave Technol., vol.18, pp.183-1844, 2000. ONDM2002 K. Kitayama

  10. Versatile applications of OC-photonic labels Optical frame OC-photonic label Data OC-MPLS LSP LSP switching OBS Photonic label processings Flow/packet classification Packet Packet ADM IP packet Packet routing ONDM2002 K. Kitayama

  11. t t t t Packet-selective photonic add/drop multiplexer Photonic ADM l1 Finest granularity! K. Kitayama et al, ONDM2001 (Viena, Feb.2001) ONDM2002 K. Kitayama

  12. Experimental results of variable-lengthpacket-selective PADM @ 10Gbit/s Photonic labels 64bit data Input packets Drop (matched label) Cut-thru (unmatched label) 5.0[ns/div] K. Kitayama et al., ECOC2001., Th.L.1.6 (Amsterdam 2001). ONDM2002 K. Kitayama

  13. Exact match & longest-prefix match algorithms Exact match algorithm for MPLS Input address 133.243.145.66 Hit address 1066 Routing table Data (IP address) Address 0000-0255 1000-1066 1067-1255 133.1.44.0 - 133.1.44.255 133.243.145.0 - 133.243.145.66 133.243.145.67 - 133.243.145.255 Longest-prefix match algorithm for IP routing Routing table Hit address 0001 Input address 133.243.145.66 Data Mask data Address 255.255.255.0 255.255.255.0 133.1.44.0 133.243.145.0 0000 0001 ONDM2002 K. Kitayama

  14. Photonic label processing with variable optical time-gate For exact match Destination and/or source codes can be gated out; For longest match code-length can be selected Header with OC-photonic labels Photonic label processor Variable time-gate Payload data Outgoing traffic Incoming traffic Optical switch ONDM2002 K. Kitayama

  15. Experimental setup for longest-prefix match Input code Time window (masking) 4 t t t Optical correlator1 Variable optical time-gate 1 + Optical encoder t Variable optical time-gate 2 Optical correlator2 - Time window (masking) 6 t t ONDM2002 K. Kitayama

  16. (a) 4-chip 8-chip (b) (c) 4 chip 4-8 chip 8 chip 50 ps/div 50 ps/div Experimental results of longest-prefix match ONDM2002 K. Kitayama

  17. Flow / packet classifier -1 Flow 2 Flow/packet classifier Flow 1 Input Output In-packet Meter Marker Shape/delay Drop Out-packet • Diffserve has a good scalability!!! • Per-hop behavior (PHB) facilitates hop-by-hop QoS control ONDM2002 K. Kitayama

  18. Flow / packet classifier -2: Diffserve OC-photonic labels Field 1 ToS Payload data t Type-of-service field ToS Gate sw. Photonic label processor 2 Field 1 Field 1 Gate sw. Photonic label processor 1 Classified flows Flow#1 Gate signal generator Input packets 1xN optical sw. Payload data . . . Flow#N ONDM2002 K. Kitayama

  19. Optical packet transmitter Packet rate PPG Field label 1 10GHz Encoder1 MLLD LN-IM C C λ1=1550nm Field label 2 Encoder 2 B A Data Data C A LN-IM 50 ps/div Optical fiber Data C B Data PPG 10 Gb/s, 64bit data Photonic label processor B A Gate signal generator Optical gate Data Data C B C A Decoder PD for code A Data C A 1x2 Opt sw Data C B Experimental setup for packet classification ONDM2002 K. Kitayama

  20. Gate signal Field label 1-1 Field label 1-2 Field label 2-1 Auto-correlation output from decoder Field label 2-2 off Switch-on Input packets 64 bit payload 64 bit payload 1 ns/div 1 ns/div Matched Unmatched 5 ns/div Experimental results of packet classification ONDM2002 K. Kitayama

  21. Summary • OC-MPLS improves bandwidth efficie(curre)ncy and provides larger label space • OC-photonic label enables ultra-fast label processing • Experimental demonstrations of versatile applications; • Exact and longest-prefix match algorithms @ 10Gb/s • Flow/packet classification @ 10Gb/s • Fast OBS path setup • Photonic packet switching ONDM2002 K. Kitayama

More Related