1 / 32

Anomalous AVV* amplitude in soft-wall AdS /QCD

Anomalous AVV* amplitude in soft-wall AdS /QCD. J.J. Sanz -Cillero ( Bari - INFN ) P. Colangelo , F. De Fazio, F. Giannuzzi , S. Nicotri , J.J. SC [PRD 85 (2012) 035013] Ongoing work with F. Zuo. QNP’12, April 19 th 2012. Outline :. VVA vertex in QCD

binta
Download Presentation

Anomalous AVV* amplitude in soft-wall AdS /QCD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Anomalous AVV* amplitude in soft-wall AdS/QCD J.J.Sanz-Cillero ( Bari - INFN) P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri, J.J. SC [PRD 85 (2012) 035013] Ongoing work with F. Zuo QNP’12, April 19th 2012

  2. Outline: • VVA vertex in QCD • Holographicmodel and Chern-Simonsterm • Longitudinal and transverse GF: • LR and VVA correlators: Son-Yamamotorelation[arXiv:1010.0718 [hep-ph] ]

  3. VVA Green’sfunction in QCD

  4. Thisworkisfocusedonthe GF, • In thesoftphotonlimit k0, providedbytherelation • in terms of the VVA correlator • The GF isdecomposed in T and L Lorentzstructures • with , g JA JA JV JV k0 JEM q q

  5. High-energy OPE formq=0 • High-energy OPE formq≠0 [ Vainshtein ‘03 ] withthemagneticsusceptibilityc: [ Vainshtein ‘03 ]

  6. AdS/QCD: Yang-Mills+Chern-Simons

  7. Setup:  gauge chiralsymmetry •  Dilaton •  AdSMetric •  • The YM actionprovidesthepropagator and 2-point GFs: Dual operators [ Karch et al. ‘06 ] • cSBthroughthev.e.v.v(z) • Phase-shiftp inducedbythe axial source A0||(x)m

  8. A5=V5=0 • Equations of Motion: • Vector EoM Analyticallysolvable

  9. Scalarv.e.v. -Explicitbreaking:mq • - Spontaneousbreaking: s [ UV behaviour / short-distance (y0) ]

  10. Chern-Simonsaction Chiralanomaly • - Chern-Simonsterm • with • - Invariantunder Vector transf. up to a boundaryterm(whichis removed) • (relevantpartfor AVV) • ContributiontoAgV (soft kg0) • withgroup factor

  11. This produces theAdSprediction • withfixedbyformq=0 • AllthatremainsExtractthe B-to-b propagators V, A , A||

  12. VVA in AdS/QCD

  13. AllEoM can beanalyticallysolved (v(y)=0) : Weusedthis tofixkCS In agreementewithexact QCD withmq=0 and no ScSB [ justmasslesspQCD ]

  14. At Q2∞one has the OPE • The OPE requiresthepresence of a logarithmcln(Q2/mq2) at O(1/Q4) •  Impossibleifthe UV-b.c.forpisjust a constant ?

  15. TheParallelcomponentcan bestillanalyticallysolved: • Theperp. component[expansion in 1/Q2 ] • PROBLEM: OPE at high-energies • Ourmodel produces c=0 ?

  16. TheParallelcomponent exp. in 1/Q2 • Theperp. Component[expansion in 1/Q2 ] ? ? • ISSUESwiththe OPE: mqsterm: no susceptibility, c=0 !!  mq2term: wL:Ifp(Q2,0) Impossibletorecover simply a constantthe lnQ2terms wT:Impossibletorecoverthe lnQ2terms

  17. LR-correlator and wT,L(mq=0): Son-Yamamotorelation

  18. Son-Yamamotoproposedtherelation [ 2010 ] cSBthrough IR BC’s [Sakai,Sugimoto ’04, ‘05] [Hirn,Sanz ‘05] ? cSBthroughv(y) [Son,Stephanov ‘04] [Karch et al. ‘06] [Colangelo et al. ‘08] MHA withr + a1 [Knecht,De Rafael ‘98] [Knecht,De Rafael ‘98]

  19. Summary and conclusions

  20. Formq=0one has p = A|| = 1[ topologicalquantity ] • NotdeterminedbyEoMsbutbyb.c. • Problemsformq=0 in wT : c=0 !! • More ingredientsneeded? • Problemsfor mq≠0 : • SY relation(at large NC) : •  No 5D-field dual toqsabq •  No transitionqsabq g •  Needforthe dual fieldBab ? [ Cappielo et al. ‘10 ] [ Gorsky et al. ‘12 ] •  p(Q,0) ? •  c=0againfrommqs !! •  Are mqcorrectionsunderstood? • Study of PAA|| •  Issues in AdSfor Q2∞ • BUTitseemstowork at Q20 • Maybe ‘cause the MHA alreadydoeswell [ Knecht et al. ‘11 ] [Kampf ‘11 ]

  21. BACKUP

  22. Scalarv.e.v. chiralsymmetrybreaking • -Explicitbreaking: • -Spontaneousbreaking: • However, in thesimplestmodel[ Colangelo et al. ’08 ] •  C1 and C2related (unlike QCD) •  Supossedlysolvablebyadding a potentialV(|X|) • Wewillassumethev.e.v.profile(regardless of itsorigin)

  23. Scalarv.e.v. chiralsymmetrybreaking • -Explicitbreaking: • -Spontaneousbreaking: • Wewillassumethev.e.v.profile(regardless of itsorigin)

  24. Forourscalarv.e.v. • v(y)= mq y/c • Noticetherelevance of the UV value of thepfield !! • At Q2∞ one has the OPE • The OPE requiresthepresence of a logarithmcln(Q2/mq2) at O(1/Q4) •  Impossibleifthe UV-b.c.forpisjust a constant ?

  25. Phenomenology(mq=0)

  26. For Q20 theEoM can beanalyticallysolvedforv(y) = sy3/c3 INPUTS: NOT a fit !!!  Experiment [ PDG ’10 ] Thiswork [ Colangelo et al. ‘11] 86.5 92.2 8.3 ±1.3 6.3 • For Q2∞perturbativelysolvedforg5v(y) = Sy3 + O(y4) Thiswork [ Colangelo et al. ‘11] Experiment [ Prades et al. ’10 ] [ Prades et al. ’10 ] -2.2 ±0.4 - 4.0 [ Friot et al. ’04 ] -3.9 ± 1.0

More Related