1 / 41

Mn -Catalyzed Cross-Coupling

Mn -Catalyzed Cross-Coupling. Mn. Nian Li. [ Ar ]3d 5 4s 2. 20190513. Lutz Ackermann , Chem . Rev. 2019, 119, 2192 − 2452. Upper range of dietary intake for adults. essential element. essential element for all species (human daily intake ~ 4 mg).

birdsall
Download Presentation

Mn -Catalyzed Cross-Coupling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mn-Catalyzed Cross-Coupling Mn Nian Li [Ar]3d54s2 20190513

  2. Lutz Ackermann, Chem. Rev. 2019, 119, 2192−2452

  3. Upper range of dietary intake for adults essential element essential element for all species (human daily intake ~ 4 mg) Lutz Ackermann, Chem. Rev. 2019, 119, 2192−2452

  4. Abundance of the chemical elements naturally abundant https://en.wikipedia.org/wiki/Abundance_of_the_chemical_elements

  5. Price of 3d transition metals (TMs) and common TMs in C−H activation in €/kg. accessed on 09/05/2018 low cost Lutz Ackermann, Chem. Rev. 2019, 119, 2192−2452

  6. Tolerance of transition metals in drugs. *High tolerance, exact amount could not be determined low toxicity Lutz Ackermann, Chem. Rev. 2019, 119, 2192−2452

  7. Mn-Catalyzed Cross-Coupling outline 1. Mn-catalyzed cross-coupling for C-C bond formation 2. Mn-catalyzed cross-coupling for C-X bond formation

  8. Mn-Catalyzed Cross-Coupling 1. Mn-catalyzed cross-coupling for C-C bond formation • Coupling of organometallic for C-C bond formation

  9. 1.1 Coupling of organometallic for C-C bond formation The first Mn catalyzed homocoupling of alkenyllithium substrate Proposed Mechanism Cahiez, G.; Bernard, D.; Normant, J. F. J. Organomet. Chem. 1976, 113, 99.

  10. 1.1 Coupling of organometallic for C-C bond formation MnCl2-catalyzed homocoupling of Grignard reagents [A] G. Cahiez, A. Moyeux, C. Duplais, J. Am. Chem. Soc. 129 (2007) 13788–13789. [B] T. Truong, J. Alvarado, O. Daugulis, Org. Lett. 12 (2010) 1200–1203. [C] Z. Zhou, W. Xue, J. Organomet. Chem. 694 (2009) 599–603. [D] Y. Yuan, Y. Bian, Appl. Organometal. Chem. 22 (2008) 15–18

  11. 1.1 Coupling of organometallic for C-C bond formation MnCl2-catalyzed homocoupling of Grignard reagents oxygen-driven Mn-catalyzed homocoupling DCE-driven Mn-catalyzed homocoupling [A] G. Cahiez, A. Moyeux, C. Duplais, J. Am. Chem. Soc. 129 (2007) 13788–13789. [B] T. Truong, J. Alvarado, O. Daugulis, Org. Lett. 12 (2010) 1200–1203. [C] Z. Zhou, W. Xue, J. Organomet. Chem. 694 (2009) 599–603. [D] Y. Yuan, Y. Bian, Appl. Organometal. Chem. 22 (2008) 15–18

  12. 1.1 Coupling of organometallic for C-C bond formation MnCl2-catalyzed heterocoupling of Grignard reagents 2.5 eq G. Cahiez, C. Duplais, J. Buendia, Angew. Chem. Int. Ed. 48 (2009) 6731–6734.

  13. 1.1 Coupling of organometallic for C-C bond formation Mn-catalyzed homocoupling of organostannanes S.-K. Kang, T.-G. Baik, X.H. Jiao, Y.-T. Lee, Tetrahedron Lett. 40 (1999) 2383–2384.

  14. 1.1 Coupling of organometallic for C-C bond formation Mn-catalyzed Stillecoupling Inorganic salt control the homocoupling by-product sp2-sp3Coupling ? S.-K. Kang, J.-S. Kim, S.-C. Choi, J. Org. Chem. 62 (1997) 4208–4209.

  15. 1.1 Coupling of organometallic for C-C bond formation Mn-catalyzed cross-coupling of organostannanes with aryliodoniumsalts S.-K. Kang, W.-Y. Kim, Y.-T. Lee, S.-K. Ahn, J.-C. Kim, Tetrahedron Lett. 39 (1998) 2131–2132.

  16. 1.1 Coupling of organometallic for C-C bond formation Cross-coupling of Grignard reagents with organotellurides碲(4d105s25p4) Inversion E-configuration Retention Z-configuration M.S. Silva, R.S. Ferrarini, B.A. Sousa, F.T. Toledo, J.V. Comasseto, R.A. Gariani,Tetrahedron Lett. 53 (2012) 3556–3559.

  17. Mn-Catalyzed Cross-Coupling 1. Mn-catalyzed cross-coupling for C-C bond formation C-C bond formation via C-X activation

  18. 1.2 C-C bond formation via C-X activation First example of Mn-catalyzed cross-coupling reaction with arylhalogenides low yield anisole as a major component G. Cahiez, D. Bernard, J.F. Normant, J. Organomet. Chem. 113 (1976) 107–113.

  19. 1.2 C-C bond formation via C-X activation MnCl2-catalyzed cross-coupling of Grignard reagents with activated aryl halides electron-withdrawing group • G. Cahiez, F. Lepifre, P. Ramiandrasoa, Synthesis (1999) 2138–2144. ortho-ketone G. Cahiez, D. Luart, F. Lecomte, Org. Lett. 6 (2004) 4395–4398. F. Zhang, Z. Shi, F. Chen, Y. Yuan, Appl. Organometal. Chem. 24 (2010) 57–63..

  20. 1.2 C-C bond formation via C-X activation MnCl2-catalyzed cross-coupling of Grignard reagents with activated aryl halides nitrogen heterocyclic chlorides Selected example M. Rueping, W. Ieawsuwan, Synlett (2007) 247–250.

  21. 1.2 C-C bond formation via C-X activation MnCl2-catalyzed cross-coupling of Grignard reagents with alkenylhalides conjugated chloroenynesor dienes • M. Alami, P. Ramiandrasoa, G. Cahiez, Synlett (1998) 325–327. alkenylhalides G. Cahiez, O. Gager, F. Lecomte, Org. Lett. 10 (2008) 5255–5256.

  22. 1.2 C-C bond formation via C-X activation MnCl2-catalyzed cross-coupling of Grignard reagents with 1,1-dibromoalkanes Proposed Mechanism Synthesis of alkenylsilanes S. T.M. O.A. E. R.E. Chelation-assisted H. Kakiya, R. Inoue, H. Shinokubo, K. Oshima, Tetrahedron Lett. 38 (1997) 3275–3278.

  23. Mn-Catalyzed Cross-Coupling 1. Mn-catalyzed cross-coupling for C-C bond formation C-C bond formation via C-H activation

  24. 1.3 C-C bond formation via C-H activation stoichiometric C−H activation Bruce, M. I.; Iqbal, M. Z.; Stone, F. G. A. J. Chem. Soc. A 1970, 3204. directing groups So far, a variety of directing groups, which contain nitrogen,oxygen, and phosphorous functionalities • Lutz Ackermann, Chem. Rev. 2019, 119, 2192−2452

  25. 1.3 C-C bond formation via C-H activation Manganese(I)-Catalyzed C−H Addition to Aldehydes Proposed Mechanism R.E. O.A. Diastereo-control M.I. Kuninobu, Y.; Nishina, T.; Takeuchi, T.; Takai, K. Angew. Chem. Int. Ed. 2007, 46, 6518.

  26. 1.3 C-C bond formation via C-H activation Mn-Catalyzed C(sp2)-H Addition to Aldehydes and Nitriles Mn(I)-Cat. C−H Additions to Nitriles Silane-Free Mn(I)-Cat. C−H Additions to Aldehydes L.A. promoted Wang, C. Angew. Chem., Int. Ed. 2015, 54, 13659−13663

  27. 1.3 C-C bond formation via C-H activation Proposed Mechanism for Mn-Catalyzed C(sp2 )-H Addition to Aldehydes and Nitriles σ-bond metathesis Wang, C. Angew. Chem., Int. Ed. 2015, 54, 13659−13663

  28. 1.3 C-C bond formation via C-H activation Mn-Catalyzed Aromatic C−H Alkenylation with Terminal Alkynes L.B. promoted Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264−1267

  29. 1.3 C-C bond formation via C-H activation Mn-Catalyzed Aromatic C−H Alkenylation with Terminal Alkynes the catalytic base is the key to success of this transformation exothermic step LLHT Wang, C. J. Am. Chem. Soc. 2013, 135, 1264

  30. 1.3 C-C bond formation via C-H activation Manganese(I)-Catalyzed C−H Allylation allyl carbonate Decarboxylative C−H/C−O Cleavages in Water Ackermann, Angew. Chem., Int. Ed. 2017, 56, 6339−6342. Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 7747−7750.

  31. 1.3 C-C bond formation via C-H activation Manganese(I)-Catalyzed C−H Cyanationof Heteroarenes tryptophans Liu, W.; Richter, S. C.; Mei, R.; Feldt, M.; Ackermann, L. Chem.- Eur. J. 2016, 22, 17958−17961.

  32. 1.3 C-C bond formation via C-H activation Manganese(I)-Catalyzed C−H Alkynylations with Bromoalkynes Amino acid moieties fully accepted Without loss of the enantiomeric Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 3172−3176.

  33. 1.3 C-C bond formation via C-H activation Manganese-Catalyzed C−H Arylation/Arylation Continuous Flow Photomediated • Ackermann, L. ACS Catal. 2018, 8, 4402−4407. Photo-Flow -Chemistry Nuhant, P. Angew. Chem.,Int. Ed. 2017, 56, 15309−15313.(594) Ackermann, L.Angew. Chem., Int. Ed. 2018, 57,10625−10629.

  34. Mn-Catalyzed Cross-Coupling 2. Mn-catalyzed cross-coupling for C-X bond formation

  35. 2.1 Mn-catalyzed C-N bond formation Mn- and Mn/Cu-catalyzed amination of aryl and heteroarylhalides Mn/Cu-catalyzed Mn-catalyzed Y.-C. Teo, F.-F. Yong, C.-Y. Poh, Y.-K. Yan, G.-L. Chua, Chem. Commun. (2009) 6258–6260. Y.-C. Teo, F.-F. Yong, G.S. Lim, Tetrahedron Lett. 52 (2011) 7171–7174.

  36. 2.1 Mn-catalyzed C-N bond formation Mn-catalyzed amination of aryl iodides with aliphatic amines F.-F. Yong, Y.-C. Teo, Tetrahedron Lett. 51 (2010) 3910–3912.

  37. 2.1 Mn-catalyzed C-N bond formation Mn/Cu Bimetallic Catalyst for N-Arylation of Amides and Sulfonamides in Water Y.-C. Teo, F.-F. Yong, I.K. Ithnin, S.-H. Trionna Yio, Z. Lin, Eur. J. Org. Chem. (2013) 515–524.

  38. 2.1 Mn-catalyzed C-N bond formation Cu/Mncatalyzed synthesis of diphenylamine Ligand-free aqueous medium D.-S.Sanghapal, Tetrahedron Letters 54 (2013) 5351–5354

  39. 2.2 Mn-catalyzed C-S bond formation Mn-catalyzedthiolation of vinyl and aryl iodides Phen RI = ect. M. Bandaru, N.M. Sabbavarpu, R. Katla, V.D.N. Yadavalli, Chem. Lett. 39 (2010) 1149–1151. T.-J. Liu, C.-L. Yi, C.-C. Chan, C.-F. Lee, Chem. Asian J. 8 (2013) 1029–1034.

  40. 2.3 Mn-catalyzed C-B bond formation Cu/Mncatalyzed synthesis of diphenylamine 450-Watt medium-pressure Hanoviamercury arc lamp Chen, H.; Hartwig, J. F. Angew. Chem. Int. Ed. 1999, 38, 3391

  41. 2.3 Mn-catalyzed C-B bond formation Manganese-Catalyzed Borylation of Unactivated Alkyl Chlorides (only works for alkyl Bromide) Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 6139.

More Related