1 / 24

Underground Nuclear Astrophysics

L aboratory U nderground N uclear A strophysics. Underground Nuclear Astrophysics. Heide Costantini INFN, Genova, Italy University of Notre Dame, IN, USA. Outline. Reaction rate for H-burning. Why going underground ?. The LUNA project:. - Main nuclear reactions studied.

blade
Download Presentation

Underground Nuclear Astrophysics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LaboratoryUndergroundNuclearAstrophysics Underground Nuclear Astrophysics Heide Costantini INFN, Genova, Italy University of Notre Dame, IN, USA

  2. Outline • Reaction rate for H-burning • Why going underground ? • The LUNA project: - Main nuclear reactions studied • Experimental techniques: • - detectors • targets • bck sources • Outlook

  3. Hydrogen burning p, 12C 13N p + p d + e+ + ne - p, d + p 3He + g pp chain CNO cycle 84.7 % 13.8 % 15N 13C 3He +3He a + 2p 3He +4He 7Be+g p, + 0.02 % 13.78 % 15O 14N 7Be+e- 7Li+g +ne 7Be +p 8B+g p, 7Li +p a + a 8B 2a + e++ ne produces energy for most of the life of the stars 4p  4He + 2e+ + 2e + 26.73 MeV

  4. Reaction rate for charged particles Z1Z2e2 tunneling probability  KT <<  RN EG E dE S(E) exp <v> = E KT 0 E0 3He(3He,2p)4He 22 keV 8 1  d(p,)3He 7 keV (KT)3/2 14N(p,)15O 27 keV (E) = S(E)·exp(-(EG/E)1/2)

  5. Reaction rate in the laboratory Rlab= ··Ip··Nav/A e ~ 10 % IP ~ mA  ~ mg/cm2 pb < s < nb event/month < Rlab < event/day (E) = S(E)·exp(-(EG/E)1/2) Extrapolation is needed !!

  6. Environmental radioactivity has to be considered underground (shielding) and intrinsic detector bck Beam induced bck from impurities in beam & targets  high purity and detector techniques (coincidence) 3MeV < Eg < 8MeV 0.0002 Counts/s 3MeV < Eg < 8MeV: 0.5 Counts/s HpGe GOING UNDERGROUND Cross section measurement requirements Rlab> Bcosm+ Benv+Bbeaminduced

  7. Laboratory forUnderground Nuclear Astrophysics LUNA 1 (1992-2001) 50 kV LUNA 2 (2000…) 400 kV LUNA site LNGS (shielding  4000 m w.e.)

  8. Measurements @ LUNA p, 12C 13N p + p d + e+ + ne - p, d + p 3He + g pp chain CNO cycle 84.7 % 13.8 % 15N 13C 3He +3He a + 2p 3He +4He 7Be+g p, + 0.02 % 13.78 % 15O 14N 7Be+e- 7Li+g +ne 7Be +p 8B+g p, 7Li +p a + a 8B 2a + e++ ne 3He(3He,2p)4He 50 KV 3He(4He,)7Be 400 KV d(p,)3He 14N(p,)15O 400 KV 50 KV

  9. 50 kV: LUNAI Energy spread: 20 eV keV/h

  10. 3He(3He,2p)4He Cosmic background suppression in silicon detector beam induced background 3He(d,p)4He. Coincidence between two Si detectors • Lowest energy: 2cts/month • Lowest cross section: 0.02 pbarn • Background < 4*10-2 cts/d in ROI windowless gas target

  11. LUNA II U = 50 – 400 kV I  500 A for protons I  250 A for alphas Energy spread  70eV Long term stability: 5 eV/h

  12. 14N(p,)15O p, 12C 13N - p, Bottle neck of CNO cycle 15N 13C p, + 15O 14N p, Determination age of globular clusters Determination of CNO neutrino fluxes Turn-off luminosity Dredge-up efficiency in AGB stars F. Herwig and S. M. Austin. Astrophys. J., 612:L73, 2004.

  13. 14N+p 7556 278 1/2 + 7297 7/2 + 7276 6859 5/2 + -21 6793 3/2 + 3/2 - - 504 6176 Q = 7.3 MeV 5/2 + 5241 Angulo et al 2000 1/2 + 5183 factor 20 ! 15O 1/2 - 0 Stot(0) = 3.2  1.77 keV b 2 goals for underground measurement Single -transitions cross section contributions (high resolution) Total cross section at energies close to Gamow window (high efficiency) METHOD METHOD Solid target + HPGe detector Gas target + BGO summing crystal

  14. High resolution measurement 6.17 6.79 5.18 DC/0 126 % • purity and stability of solid targets  TiN deposited on Ta backing • Careful determination of summing effect due to close detector geometry • HpGe efficiency ~ 1% Emin=120 KeV

  15. High efficiency measurement • All the  cascades are summed together to a peak at E=Q+Ecm • windowless 14N gas target gas target beam • Ip~500 A  the beam heats the gas changing the local density • BGO efficiency in the ROI ~ 65% Emin= 70 KeV

  16. Q = 9277 C t = 49.12 days Reaction Rate = 10.95  0.83 counts/day Background rate = 21.14  0.75 counts/day Elab=80 keV

  17. Results Both results confirm the low reaction rate GC age increases of 0.7-1 Gyr • CNO neutrino flux decreases a factor  2

  18. If the Q-value of the nuclear reaction is < 3MeV, is it useless to go underground ? Cu The 3He(,)7Be cross section is the major nuclear physics uncertainty in the determination of the 8B-neutrinos flux p + p d + e+ + ne  d + p 3He + g pp chain 84.7 % 13.8 % Detectors can be shielded passively with proper Pb-Cu shield as on surface Pb The production of 7Li in BBN is very sensitive to 3He(,)7Be cross section. 3He +3He a + 2p 3He +4He 7Be+g Cu 0.02 % Det 13.78 % 7Be+e- 7Li+g +ne 7Be +p 8B+g 7Li +p a + a 8B 2a + e++ ne Ongoing experiment 3He(,)7Be Q = 1.6 MeV Environmental radioactivity is present underground (Rn) BUT underground passive shielding is more effective since  flux, that create secondary s in the shield, is suppressed.

  19. Q = 1.6 MeV Ecm J Ex(keV) 1586 DC 3He+ 3He(a,g)7Be 7Be+e7Li*(g)+e 429 1/2- 3/2- 0 7Be Eg=1586 keV + Ecm (DC  0); Eg= 1157 keV + Ecm (DC  429) Eg= 429 keV Eg = 478 keV 1/2- 478 EC 0 3/2- 7Li Cross sections measurements were performed: detecting the prompt  from -capture reaction detecting delayed  coming from 7Be decay The results from the two techniques show a 9% discrepancy GOAL AT LUNA:MEASUREMENT WITH BOTH METHODS AND WITH ACCURACY ~ 4-5 %

  20. Si monitor Activation method Online- method • 3He recirculating system • 135% HpGe detector in close geometry to target • 0.3 m3 Pb-Cu shield • suppression of natural bck: 10+5 • chamber in OFC to reduce background on • detector • 7Be nuclei collected on the beam stop • during online -measurement • 125% HpGe detector • Pb-Cu shield in low activity lab in LNGS • suppression of natural bck: 10+5 7Be- decay from activation measurement at E=350 keV On line -measurement E=400 keV T=4.5 d I=280 A 7Be+e7Li*()+e T=2 days 3He(,)7Be See poster by G. Gyürki on Thursday

  21. ECM (keV) Ex (keV) J 25Mg(p,)26Al solid target 1”x1”NaI(Tl) Cooling trap Motivations • Nucleosynthesis of the elements 24<A<27 • Astronomical interest of 1809 keV 26Al decay -line 4 BGO Detector 5+(4+) 190 6496 Novae explosive Burning (T9>0.1) 130 6436 4- 108 6414 0+ 93 6399 2- AGB or W-R Stars (T9~0.05) 6364 3+ 58 4- 37 6343 Q = 6306 keV 25Mg+p 6280 3+ -26 Astronomical interest: T9<0.2 EG<220 keV 26Alm 228 0+ 0 5+ 26Al0

  22. A working group inside LUNA is preparing a new proposal for the new LUNA phase Spokesperson: Carlo Broggini broggini@pd.infn.it What else can be done with LUNA II (400kV) ? maybe a new accelerator for He-burning key reactions?

  23. ALNA Idea of a new underground accelerator facility inside the DUSELlaboratory (Homestake (SD) or Henderson Mine (CO)) Focused mainly on study of He-burning and C-burning reactions • 1st phase: installation of a light ion (2 MV terminal Voltage) accelerator to study (,n) and (,) reactions in forward kinematics • 2nd phase: heavy ion accelerator for inverse kinematics studies Notre Dame Recoil Mass separator See J. Görres’ talk tomorrow!!

  24. LUNA ATOMKI : Debrecen INFN: Genova, Gran Sasso, Milano, Napoli, Padova, Torino Univ. Bochum Univ. Lisboa

More Related