280 likes | 393 Views
מבנה המחשב - מבוא למחשבים ספרתיים. Synchronous Circuits. Question 10.2 - Circuit Analysis. Comb. Logic. AND. D FF Q. CLK. CLK. Question 10.2 - Circuit Analysis. case #1 – negative setup time. t i-1. t i. CLK. C i. D. Logic. Q. Not stable. Stable.
E N D
מבנה המחשב - מבוא למחשבים ספרתיים Synchronous Circuits
Question 10.2 - Circuit Analysis Comb. Logic AND D FF Q CLK CLK
Question 10.2 - Circuit Analysis case #1 – negative setup time ti-1 ti CLK Ci D Logic Q Not stable Stable
Question 10.2 - Circuit Analysis case #1 – negative setup time ti-1 ti CLK Ci D Logic Q Not stable Stable
Question 10.2 - Circuit Analysis case #2 – positive setup time ti-1 ti CLK Ci Ci D Logic Q Not stable Stable
Question 10.2 - Circuit Analysis case #2 – positive setup time ti-1 ti CLK Ci Ci D Logic Q Not stable Stable
Toy Design • Identifying system states • Identifying state transitions and deciding on Moore or Mealy model • Detailing the state machine transition and output functions • The combinational circuits • The Canonic circuit • Clock rate calculation
Toy System States • Only the three switching elements keep state. • Each has a binary state: Left or Right • We can model the state of every switch by a single bit. • Convention: 0=Left, 1=Right • The total number of states: 23 = 8
State Diagram 000
State Diagram 100 0/0 000 Enter from Left Out from Left Swap X 1/0 X is Left Z is Left Y is Left 011 Enter from Right Out from Left Swap Y & Z
State Diagram 100 010 0/0 1/0 0/0 000 111 1/0 011
State Diagram 100 010 0/0 1/0 0/0 000 0/0 1/1 111 1/0 Enter Right Out Right Swap Y&Z 011 110 001
State Diagram 100 010 0/0 1/0 0/0 000 0/0 1/1 111 1/0 0/1 1/1 011 110 001
State Diagram 100 010 0/0 1/0 0/0 000 0/0 1/1 111 1/0 0/1 1/1 011 0/1 110 1/1 101 001
State Diagram 100 010 0/0 1/0 0/0 000 0/0 1/1 111 1/0 0/1 1/1 011 0/1 110 1/1 1/1 101 001 0/0
State Diagram 100 010 0/0 1/0 0/0 000 0/0 1/1 111 1/0 0/1 1/1 011 0/1 110 1/1 1/1 0/0 1/1 101 001 0/0
State Diagram 100 010 0/0 1/0 0/0 000 0/0 1/1 111 1/0 0/1 1/1 1/1 011 0/0 0/1 110 1/1 1/1 0/0 1/1 101 001 0/0
Output Function Output = YI + XZ + ZI (This is λ) • This circuit has 3 AND(2) in parallel, and then an OR(3) • No NOT gates. • Delay = D(AND)+2*D(OR) • Assuming we use OR(2) only
The Next State Function of X 100 010 0/0 1/0 0/0 000 0/0 1/1 111 1/0 0/1 1/1 1/1 011 0/0 0/1 110 1/1 1/1 0/0 1/1 101 001 0/0
X Next State Function X = X’I’+XI (This is part of δ) • This circuit has: • 2 negations in parallel • 2 AND(2) in parallel, • and then an OR(2) • Delay = D(NOT)+D(AND)+D(OR)
The Canonic Circuit Output Circuit λ Output {0,1} Input {0,1} Next State Circuit δ Next State {0,1}3 State {0,1}3 State Register
Stripping away the Flip-Flops Output {0,1} Output Circuit λ Input {0,1} Next State Circuit δ Next State {0,1}3 State {0,1}3 Q-port D-port
Attaching Delay Output {0,1} Output Circuit pd(λ) setup(OUT) Input {0,1} pd(IN) Next State Circuit pd(δ) Next State {0,1}3 State {0,1}3 tpd tsu Q-port D-port
Finding the Clock Rate Output {0,1} Output Circuit pd(λ) setup(OUT) Input {0,1} pd(IN) Next State Circuit pd(δ) Next State {0,1}3 State {0,1}3 tpd tsu Q-port D-port
The Clock Rate We are done!