• 140 likes • 363 Views
Topik #3 – Sistem-Sistem Bilangan. Sistem-Sistem Bilangan secara matematis: Contoh-2: desimal: 5185.68 10 = 5x10 3 + 1x10 2 + 8x10 1 + 5x10 0 + 6 x 10 -1 + 8 x 10 -2 = 5x1000 + 1x100 + 8x10 + 5 x 1 + 6x.1 + 8x.01 biner (radiks=2, digit={0, 1})
E N D
Topik #3 – Sistem-Sistem Bilangan • Sistem-Sistem Bilangan secara matematis: • Contoh-2: • desimal: 5185.6810 = 5x103 + 1x102 + 8x101 + 5x100 + 6 x 10-1 + 8 x 10-2 = 5x1000 + 1x100 + 8x10 + 5 x 1 + 6x.1 + 8x.01 • biner (radiks=2, digit={0, 1}) 100112 = 1 16 + 0 8 + 0 4 + 1 2 + 1 1 = 1910 | | MSB LSB 101.0012 = 1x4 + 0x2 + 1x1 + 0x.5 + 0x.25 + 1x.125 = 5.12510
Sistem Radiks Himpunan/elemen Digit Contoh Desimal r=10 {0,1,2,3,4,5,6,7,8,9} 25510 Biner r=2 {0,1} 111111112 Oktal r= 8 {0,1,2,3,4,5,6,7} 3778 r=16 {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} FF16 Heksadesimal Desimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Heksa 0 1 2 3 4 5 6 7 8 9 A B C D E F Biner 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Sistem-Sistem Bilangan Umum
Konversi Radiks-r ke desimal • Ekspansikan dgn menggunakan definisi berikut • Contoh-2: • 1101.1012 = 123 + 122 + 120 + 12-1 + 12-3 = 8 + 4 + 1 + 0.5 + 0.125 = 13.62510 • 572.68 = 582 + 781 + 280 + 68-1 = 320 + 56 + 16 + 0.75 = 392.7510 • 2A.816 = 2161 + 10160 + 816-1 = 32 + 10 + 0.5 = 42.510 • 132.34 = 142 + 341 + 240 + 34-1 = 16 + 12 + 2 + 0.75 = 30.7510 • 341.245 = 352 + 451 + 150 + 25-1 + 45-2 = 75 + 20 + 1 + 0.4 + 0.16 = 96.5610
Konversi Desimal ke biner • Konversi bilangan desimal bulat: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). • Contoh: Konersi 17910 ke biner: 179 / 2 = 89 sisa 1 (LSB) / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 0 sisa 1 (MSB) 17910 = 101100112
Konversi desimal ke biner – lanj. • Konversi fraksi-fraksi desimal ke biner: kalikan dengan 2 secara berulang sampai fraksi hasil perkalian = 0 (atau sampai jumlah penempatan biner yang diharapkan). Digit kesleuruhan hasil perkalian memrupakan jawaban, dengan yang pertama MSB, dan yang terakhir LSB. • Contoh: Konversi 0.312510 ke biner Digit hasil .3125 2 = 0.625 0 (MSB) .625 2 = 1.25 1 .25 2 = 0.50 0 .5 2 = 1.0 1 (LSB) 0.312510 = .01012
Penjumlahan aritmatika Biner • Mirip spt penjumlahan bil. Desimal, dua bil. biner dijumlahkan melalui penambahan setiap pasangan bit-bit bersamaan dengan propagasi carry. • Contoh: Cout dr bit ke-5 = Cin dr bit ke-6
Pengurangan aritmatika Biner • Dua bil. Biner dikurankan melalui pengurangan setiap pasangan bit-bit berikut suatu borrowing, jika diperlukan. • Contoh:
Representasi-2 bilangan biner negatif • Besaran bertanda (Signed-magnitude) • Gunakan MSB sbg bit tanda (sign bit), dan sisa sbg besran (magnitude) • Contoh: 111111112 = -12710 • Jangkauan mulai -2(n-1)+1 s/d 2(n-1)–1 u/ sebuah bil. biner n-bit • Sign bit tidak digunakan u/ operasi aritmatika • Komplemen satu (Ones’-complement) • MSB sbg sign bit; komplemenkan seluruh bit-2 u/ memperoleh bil. negatif • Contoh: 11910 = 01110111, -11910 = 10001000 • Jangkauanya sama spt representasi “signed-magnitude” • Sign bit akan digunakan dalam operasi aritmatika • Komplemen dua (Two’s-complement) • MSB sbg sign bit; komplemenkan seluruh bit-2 dan tambah 1 u/ memperoleh bilangan negatif • Conoth: -11910 = 10001001 • Jangkauan mulai dari -2(n-1) s/d 2(n-1)–1 u/ sebuah bil biner n-bit • `Sangat baik’ u/ operasi aritmatika
Perbandingan dari representasi yang berbeda Hanya 2’s-complement membentuksebuah siklus counting
Sifat-2 penting (Key properties) dari 2’s-complement • Represntasi nol (zero) yang unikn • Signed-magnitude dan 1’s-complement memiliki dua nol • dapat merepresentasikan satu bil. ekstra: -2(n-1) s/d 2(n-1)–1 • Disamping operasi `add-one’ dlm penegatifan sebuah bil., komplemen dari komplemen sebuah bilangan adalah bilangan asal (original number. • Nilai bil. 2’- complement n-bit dinyatakan sbb.: • D 2’s-complement = dn-1-2 n-1 + dn-22n-2 … d121 + d0 • Contoh: 10112 = 1-23 + 022 + 121 + 1 = -8 + 0 + 2 + 1 = -5 • Ekstensi tanda (Sign-extension): • Sebuah bil 2’s-complement n=bit dpt dikonversi menjadi bil m-bit dimana m>n melalui penambahan m-n kopi dr sign bit ke kiri bilangan. • Contoh: 1011 4-bit2’s-complement = 11111011 8-bit2’s-complement– terbukti !! • Penjumlahan dan pengurangan bil.-2 2’s complement seperti halnya bilangan tak bertanda, namun melalui aturan deteksi overflow yang sederhana
Penjumlahan/pengurangan 2’s complement • Operasi-2 yang sama baik u/ bil. positif maupun negatif • `Penjumlahan’ contoh-2: 4 0100 -2 1110 + -7 1001 + -6 1010 -3 1101 -8 1 1000 • Pengurangan dilakukan dgn penambahan 2’s complement dari bil. • Mirip spt bil. desimal • Implementasi sederhana dgn menggunakan rang. digital – ? • invert bit-bit dan tambahkan sebuah Cin=1 menjadi bit LSA • Overflow: Hasil melebihi range -2(n-1) s/d 2(n-1)–1 • terjadi jk signs (MSBs) dari kedua operand sama dan sign hasil berbeda • Dpt juga dideteksi dgn membandingkan Cin dan Cout dari sign bi • Implementasi gunakan XOR. Ignore carry out from MSB
Perkalian Biner • Perkalian dilakukan melalui penambahan sebuah list dari shifted multiplicands menurut digit pengali (multiplier) • Contoh: (tak bertanda (unsigned)) 11 1 0 1 1 multiplicand (4 bits) X 13 X 1 1 0 1 multiplier (4 bits) -------- ------------------- 33 1 0 1 1 11 0 0 0 0 ______ 1 0 1 1 143 1 0 1 1 --------------------- 1 0 0 0 1 1 1 1 Hasil kali (8 bits)
Perkalian Biner – lanj. • Disamping metode sebelumnya, kita dapat menambahkan setiap shifted multiplicand dengan sebuah “partial product”. Contoh sbelumnya menjadi sbb/: 11 1011 multiplicand x 13 x 1101 multiplier 143 0000 partial product 1011 shifted multiplicand 01011 partial product 0000 shifted multiplicand 001011 partial product 1011 shifted multiplicand 0110111 partial product 1011 shifted multiplicand 10001111 product
Perkalian 2’s-complement • Sebuah urutan penjumlahan two’s-complement dari shifted multiplicands kecuali untuk pada step terakhir dimana shifted multiplicand sesuai dgn MSB harus di- “2’s complementkan (negatifkan dan tambah 1). • Sebelum menambahkan sebuah shifted multiplicand dgn partial product, sebuah bit tambahan ditambahkan ke kiri dari partial product dgn menggunkan sign extension. • Contoh: - 5 1011 multiplicand x - 3 x 1101 multiplier 15 00000 partial product 11011 shifted multiplicand 111011 partial product 00000 shifted multiplicand 1111011 partial product 11011 shifted multiplicand 11100111 partial product 00101 shifted and 2’s complemented 00001111 product tambakan bit dgn Menggunakan sign extension