1 / 28

EECS 20 Lecture 6 (January 29, 2001) Tom Henzinger

Transducive Systems. EECS 20 Lecture 6 (January 29, 2001) Tom Henzinger. Continuous-Time Signals. sound position. Discrete-Time Signals. sampledSound movie. ContinuousTime = { x  Reals | x  0 } DiscreteTime = { 0, 1, 2, 3, 4, … }.

blake
Download Presentation

EECS 20 Lecture 6 (January 29, 2001) Tom Henzinger

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transducive Systems EECS 20 Lecture 6 (January 29, 2001) Tom Henzinger

  2. Continuous-Time Signals sound position Discrete-Time Signals sampledSound movie

  3. ContinuousTime = { x  Reals | x  0 } DiscreteTime = { 0, 1, 2, 3, 4, … } continuousTimeSignal : ContinuousTime  Values discreteTimeSignal : DiscreteTime  Values continuousTimeSignal = evolution of values discreteTimeSignal = stream of values

  4. More Discrete-Time Signals text : DiscreteTime  Chars file : DiscreteTime  Bins vendingMachine : DiscreteTime  Events Chars = { a, b, c, … } Bins = { 0, 1 } Events = { dropQuarter, requestCoke, deliverCoke, … }

  5. Transducive or Combinational System Input Value Output Value transduciveSystem : Values  Values

  6. Transducive or Combinational System  true false  : Bools  Bools

  7. Transducive or Combinational System f frame frame f : Frames  Frames

  8. Reactive or Sequential System Input Signal Output Signal reactiveSystem : [ Time  Values ]  [ Time  Values ]

  9. Reactive or Sequential System F movie movie F : [ Time  Frames ]  [ Time  Frames ]

  10. Reactive or Sequential System F sound text F: [ ContinuousTime  Pressure ]  [ DiscreteTime  Chars ]

  11. Reactive or Sequential System G text sound G: [ DiscreteTime  Chars ]  [ ContinuousTime  Pressure ]

  12. Identity ? F G sound sound text

  13. Identity ? G F text text sound

  14. Reactive Systems • Memory-free systems • Delays • Causality • Finite-memory systems • Infinite-memory systems

  15. Every transducive system is a reactive system f : Values  Values F : [ Time  Values ]  [ Time  Values ] such that  x  [ Time  Values ],  y  Time, ( F (x) ) (y) = f ( x (y) )

  16. Every transducive system is a reactive system f : Values  Values F : [ Time  Values ]  Time  Values such that  x  [ Time  Values ],  y  Time, F (x,y) = f ( x (y) )

  17. Every transducive system is a continuous-time reactive system f : Values  Values F : [ ContTime  Values ]  [ ContTime  Values ] such that  x  [ ContTime  Values ],  y  ContTime, ( F (x) ) (y) = f ( x (y) )

  18. normalize : Reals  Reals such that  x  Reals, normalize (x) = x - 50 Normalize : [ Reals+ Reals ]  [ Reals+  Reals ] such that  x  [ Reals+ Reals ] ,  y  Reals+, ( Normalize (x) ) (y) = normalize ( x (y) ) = x (y) - 50

  19. Normalize (sin) : Reals+ Reals such that  y  Reals+ , Normalize (sin) (y) = sin (y) - 50 . Normalize (id) : Reals+ Reals such that  y  Reals+ , Normalize (id) (y) = y - 50 . Normalize (53) : Reals+ Reals such that  y  Reals+ , Normalize (53) (y) = 3 .

  20. Normalize (sin) : Reals+ Reals such that  y  Reals+ , Normalize (sin) (y) = sin (y) - 50 . Normalize (id) : Reals+ Reals such that  y  Reals+ , Normalize (id) (y) = y - 50 . Normalize (53) : Reals+ Reals such that Normalize (53) = 3 .

  21. trunc : Reals  Reals 256 if x > 256 x if -256  x  256 -256 if x < -256 { such that  x  Reals, trunc (x) = Trunc : [ Reals+ Reals ]  [ Reals+  Reals ] such that  x  [ Reals+ Reals ] ,  y  Reals+, ( Trunc (x) ) (y) = trunc ( x (y) )

  22. Trunc (sin) : Reals+ Reals such that  y  Reals+ , Trunc (sin) (y) = sin (y) . Trunc (id) : Reals+ Reals such that  y  Reals+ , Trunc (id) (y) = y if y < 256 256 if y  256 { Trunc (500) : Reals+ Reals such that Trunc (500) = 256 .

  23. Every transducive system is a discrete-time reactive system f : Values  Values F : [ DiscTime  Values ]  [ DiscTime  Values ] such that  x  [ DiscTime  Values ],  y  DiscTime, ( F (x) ) (y) = f ( x (y) )

  24. quantize : Reals  ComputerInts such that  x  Reals, quantize (x) = trunc ( x ) Quantize : [ Nats0 Reals ]  [ Nats0  ComputerInts ] such that  x  [ Nats0 Reals ] ,  y  Nats0 , ( Quantize (x) ) (y) = quantize ( x (y) ) = trunc ( x(y) )

  25. Quantize (squareroot) : Nats0 ComputerInts such that Quantize (squareroot) = { (0,0), (1,1), (2,1), (3,1), (4,2), (5,2), … , (1000000,256), … } . Quantize (id) : Nats0 ComputerInts such that Quantize (id) = { (0,0), (1,1), (2,2), (3,3), … , (256,256), (257,256), … } . Quantize (pi) : Nats0 ComputerInts such that Quantize (pi) = 3 .

  26. negate : Bools  Bools such that  x  Bools, negate (x) =  x Negate : [ Nats0 Bools ]  [ Nats0  Bools ] such that  x  [ Nats0 Bools ] ,  y  Nats0 , ( Negate (x) ) (y) = negate ( x (y) ) =  x(y)

  27. alt : Nats0 Bools such that  y  Nats0 , alt (y) = true if y odd false if y even { Negate (alt) : Nats0 Bools such that Negate (alt) = { (0,true), (1, false), (2, true), (3, false) , (4, true), … } . Negate (true) : Nats0 Bools such that Negate (true) = false .

  28. A reactive system F : [ Time  Values ]  [ Time  Values ] is memory-free iff there exists a transducive system f : Values  Values such that  x  [ Time  Values ] ,  y  Time, ( F (x) ) (y) = f ( x (y) ) .

More Related