1 / 60

Determinismus

F. F. Determinismus. v. m. Raum-Zeit-Kurve r(t). Gilt dies auch in der Mikrowelt?. Elektron. Als erstes Elementar- Teilchen entdeckt von J.J. Thomson 1897:. Ruhemasse m 0 = 9.1094 10 -31 kg Elementarladung e = 1.6022 10 -19 C. Atom der Ordnungszahl Z. Kern Z +.

blankinship
Download Presentation

Determinismus

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. F F Determinismus v m Raum-Zeit-Kurve r(t) Gilt dies auch in der Mikrowelt?

  2. Elektron Als erstes Elementar-Teilchen entdeckt von J.J. Thomson 1897: Ruhemasse m0= 9.1094 10-31kg Elementarladung e = 1.6022 10-19C

  3. Atom der Ordnungszahl Z Kern Z + Elektronenhülle Z -

  4. Metall - Kristall 0.2nm

  5. - +

  6. Austritts-Arbeit

  7. Ua T, E Kathode Anode Elektronenstrahl - + Ekin = e Ua

  8. Fokussierung eines Elektronenstrahls Quelle Linse Objekt

  9. - + Ablenkung eines Elektronenstrahls Quelle Linse Ablenker Objekt

  10. Eigenschaften des Elektronenstrahls • Trägheitslose Ablenkbarkeit • Feinste Fokussierbarkeit • Höchste Energiedichte • cm2 Watt/cm2Elektronenstrahl 10-7 109 • Lichtbogen 10-3 105Schweißbrenner 10-2 104

  11. Elektronenstrahl – Bohren und Fräsen - +

  12. Bohrungsdurchmesser 4/1000 mm

  13. Elektronenstrahl-Schweißen - + A B

  14. Elektronenstrahl-Schweißen - + A B

  15. Electron beam vs. TIG

  16. Komplizierte SchweissnähteGasgenerator für Airbag Photo: Messer-Griesheim

  17. Electron Beam Lithography - + resist silicon 0.0001 mm

  18. ENIAC 1944Electronic Numeric Integrator and Calculator

  19. Höchstintegration 10mm, 106 Komp .................................heute: Strukturbreiten < 1/10,000mm

  20. Elektronen sind Teilchen ! • Masse m • Ladung e • kinetische Energie e Ua • lokalisierbar • elektromagn. Kräfte • Bahnen • Newton Mechanik

  21. Materiewellen Wellenlänge Impuls „Wer sich über die Quantenmechanik nicht wundert, der hat sie nicht verstanden !“ Louis Victor Pierre Raymond Prince de Broglie, 1892 - 1987

  22. v m Raum-Zeit-Kurve r(t) F F Teilchen und Wellen Bahn:lokalisierbar ???? Welle:nicht-lokalisierbarBeugungInterferenz

  23. Teilchen am Spalt

  24. Welle am Spalt falsch !

  25. Wellen: Beugung am Spalt

  26. Wellen: Beugung am Spalt

  27. Beugung am Spalt

  28. Beugung am Spalt

  29. Zweistrahl-Interferenz durch Beugung am Doppelspalt

  30. Fresnel biprism for light source  biprism  detector 1/q interference pattern I(x)=2I0(1+cos (2qx)) with spatial frequency q:=/

  31. Wellen und Teilchen: Beugung am Spalt

  32. Teilchen: Beugung am Spalt p 

  33. Teilchen: Beugung am Spalt  x p

  34. Werner Heisenberg

  35. x p  h Ort-Impuls • E t  h Energie-Zeit Heisenbergsche Unschärfe für QM-Teilchen

  36. Electron Diffraction Experiment Electron Micrograph of the slits Electron Diffraction One Slit Two Slits from: Jönsson, Z. f. Physik 161 (1961), 454 - 474Möllenstedt, Physica B 151 (1988) 201 - 205

  37. Möllenstedt electron biprism electron source  biprism +  detector 1/qc interference pattern I(x)=2I0(1+cos (2qcx)) with spatial frequency q:=/ ; ~Ubp

  38. Electron Interferometer (1962)

  39. Quantum Noise time of flight  1µs << time between impacts  1ms single electron interference

  40. Elektronenwellen = Wahrscheinlichkeitswellen

  41. de Broglie Letter to Möllenstedt Paris, 19 June 1956 Monsieur and dear Colleague, I was extremely pleased to receive your kind letter and to learn of your beautiful experiments in which you have obtained electron interference by a method analogous to Fresnel's biprism. It was, of course, a great pleasure to see that you have obtained a new and particularly brilliant proof of the formula l= h/(mv), and I shall not fail to make known your experiments to my students. Thanking you most gratefully for your communication, I beg you to accept, Monsieur and dear colleague, the expression of my devoted sentiments, Louis de Broglie

  42. Surely, you are joking Mr. Feynman We choose to examine a phenomenon which is impossible, absolutely impossible to explain in any classical way. In reality, it contains the only mystery. We cannot make the mystery go away by explaining how it works. We will just tell you how it works. We should say right away that you should not try to set up this experiment. This experiment has never been done before. The trouble is that the apparatus would have to be made on an impossibly small scale ... We are doing a thought experiment.   (The Feynman Lectures on Physics)

  43. Beating of electron waves E E V t E E+E Hubert Schmid, PhD thesis, Tuebingen 1985

  44. Which Way?

  45. E E =E/h energy spectrometer • interference contrast   <1 < h/E • energy resolution E  >h  >h/E either interference or which way

  46. entweder – oder ......... Elektronen sind Wellen • Elektronen, die interferieren, sind nicht unterscheidbar • Elektronen, die unterscheidbar sind, zeigen keine Interferenzerscheinung Elektronen sind Teilchen

  47. Zeiss Lightmicroscopes Robert Koch's Microscope (1880) Lightmicroscope( 1960)

  48. Abbe limit of microscopy  Objects < /2 do not affect the wave resolution > /2

  49. Electron Waves non-relativistic relativistic non-relativistic relativistic

More Related