540 likes | 745 Views
Mechanisms of solvent tolerance in Pseudomonas putida. Juan L. Ramos & Ana Segura, Antonia Rojas, Wilson Terán, M. Trini Gallegos, Estrella Duque. Solvent-tolerant microbes are envisaged as powerful tools for:. Decontamination of sites heavily polluted with solvents
E N D
Mechanisms of solvent tolerance in Pseudomonas putida Juan L. Ramos & Ana Segura, Antonia Rojas, Wilson Terán, M. Trini Gallegos, Estrella Duque
Solvent-tolerant microbes are envisaged as powerful tools for: • Decontamination of sites heavily polluted with solvents • Biotransformations in double-phase systems • Biosensors
*Inoue and Horikoshi, 1991, Nature 338, 264-266 Pseudomonas putida, toluene tolerant *Cruden et al., 1992, Appl. Environ. Microbiol. 58, 2723-2729 P. putida , p-xylene tolerant *Weber et al., 1993, Appl. Environ. Microbiol. 59, 3502-3504 P. putida, styrene tolerant *Ramos et al., 1995, J. Bacteriol. 177, 3911-3916 P. putida, toluene tolerant and able to use toluene as the only carbon source
O2 O2 X F C1 C2 B A D E G I H S T NAD+ (todD) NADH+H+ CH 3 toluene ISPTOL NAD+ FerredoxinTOL ReductaseTOL (todC1C2) (todB) (todA) NADH+H+ FerredoxinTOL ReductaseTOL ISPTOL CH 3 H OH OH H cis-toluene dihydrodiol CH 3 OH OH 3-Methylcatechol (todE) Ring fission
Growth of P. putida DOT-T1E in the presence of organic solvents log Pow Solvent Growth (OD660) n-Decane n-Octane n-Heptane Propylbenzene Diethylphthalate Cyclohexane Ethylbenzene p-xylene Styrene Toluene 1-Heptanol Dimethylphthalate Benzene Chloroform Butanol 5.6 4.5 4.1 3.6 3.3 3.2 3.1 3.1 3.0 2.5 2.4 2.3 2.0 2.0 0.8 >2.0 >2.0 >2.0 >2.0 >2.0 >2.0 >2.0 >2.0 >2.0 >2.0 >1.0 >1.0 <0.1 <0.1 <0.1
Why are Pseudomonas DOT-T1E and other strains tolerant to toluene? • Physical barriers that increase membrane rigidity • Biochemical barriers that involve removal of toluene by efflux pumps
PHYSICAL BARRIERS (cis -> trans isomerization, Cardiolipin biosynthesis, Fatty acid metabolism) TtgJ Constitutive and inducible Efflux pumps BIOCHEMICAL BARRIERS
LB+tol(g) LB -0.3% tol +0.3% tol -0.3% tol +0.3% tol 10-1 10-3 10-1 10-3 10-1 10-3 10-1 10-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 10-5 10-5 10-5 10-7 10-7 10-7 10-7
DOT-T1E (wild type) 10 log CFU/ml 5 0 20 40 60 0 time (minutes)
PHYSICAL BARRIERS • Cis trans isomerization of unsaturated fatty acids • Biosynthesis of cardiolipin
LB LB +1%(v/v) toluene C14:0 C16:1 cis C16:1 trans C16:0 C17:cyclopropane C18:2 cis cis C18:1 cis ol C18:1 cis va C18:1 trans va C18:0 cis/trans saturated/unsaturated 1.0 15.4 3.1 55.0 1.1 1.0 4.0 13.3 0.0 0.95 10.7 1.3 1.0 8.3 10.3 53.3 1.0 1.0 3.0 10.0 3.9 0.9 1.5 1.2
5´-CATAGGAACTACCTGGTCGGGCGAATATCAGAAGGTGCCGAATCATAACAAA GCTGCGCGGTTTTTAGGCATGTCGCCCATTTGCATGAAAACTGCTCATGTTG GGCGGGTGGAGGCAGCGCAAGGCACCCAGGACGACCAGGCAACAAATCGTGA TGGCTTTCAAGAACCAGGACTTTCCGCACATG-3´ 182bp metH cti act 194bp 5´-TGATCGGGTTGGCTGACCTTTCCGAGTACCTTGCGGTCGGAATGGGTG GGTGGTCTTGATCGATTGCAAAGGGGGCTGCTTTGCAGCCCTTCGCGG GTGAACCCGCTCCTACAACAGGTACGGCGCTGCTCTGAAGGCTGGCGC TGGCCTCTGCACTCGATACGGGCCTCAATGCACCGCCAAGCGCAGGGT ATTCCATG-´3 BglII SphI BglII SphI 2.9 kbp 1.6 kbp 2.4 kbp 6.9 kbp
BglII BamHI BglII BamHI KpnI BglII 0,8 kbp 1,5 kbp 1,6 kbp 0,57kbp ctiT1 N-terminal region ctiT1 N-terminal region
Fatty acid Growth conditions LB LB plus heptane C14:0 C16:1,9 cis C16:1,9 trans C16:0 C17:cyclopropane C18:2 C18:1,9 cis ol C18:1,11 cis vac C18:1,11 trans vac C18:0 2 8 0 54 17 1 1 16 0 2 1 10 0 50 4 1 3 26 0 8 DOT-T1E-P4
0.8 0.6 0.4 0.2 0 2 4 6 8 10 12 Turbidity (OD 660nm) Time (hours)
Head group phospholipid composition of P. putida DOT-T1 growing in the absence and in the presence of organic solvents PE Organic solvent PE PG CL PG+CL None 78 10 12 3.5 Toluene (1% v/v) 65 9 26 1.8
CL BIOSYNTHESIS TAKES PLACE AT THE EXPENSE OF PG • 32P incorporation assays indicates that in the presence of toluene the rate of CL synthesis is twice as high as in the absence of the solvent. • The Pseudomonas putidacls gene has been cloned, mutated in vitro and inactivated in vivo by homologous recombination. • The response of a cls mutant to toluene shocks has been analyzed. Under a any growth conditions a solvent shock resulted in a survival that is two orders of magnitud below that of the wild-type strain.
Conclusions • The main alterations in response to toluene observed in Pseudomonasputida are: cis -> trans isomerization of unsaturated fatty acids and increase in the level of cardiolipin. • A cti mutant of Pseudomonas putida DOT-T1 exhibited a delay in growth in response to solvents, but it was as tolerant as the wild-type to sudden solvent shocks. • A cls mutant of Pseudomonas putida DOT-T1 is more sensitive to solvent shocks than the wild-type strain.
Solvents Fatty acids saturated cis-isomer trans-isomer
Solvent tolerance is an energy-dependent process Incorporation of 1,2,4-[14C]-trichlorobenzene into membranes of P. putida cells 14C/mg cell protein Conditions Untreated 20.000 FCCP-treated 300.000
Isolation of Tn5 solvent-sensitive mutants of Pseudomonas putida DOT-T1E • 1) Mutants that simultaneously exhibited increased sensitivity to solvents and antibiotics (ampicillin, chloramphenicol and tetracycline) • 2) Mutants that exhibited increased sensitivity to solvents but retained the wild-type level of resistance to ampicillin, chloramphenicol and tetracycline
DOT-T1E KT-2440 DOT-T1E-18 9 log CFU ml-1 5 1 0 40 0 20 40 0 20 40 20 Time (min)
Incorporation of 1,2,4-[14C]-trichlorobenzene into membranes of P. putida cells Culture Conditions 14C/mg cell protein Wild-type DOT-T1E18 LB 20.000 280.000 LB+ toluene 30.000 252.000
A G T C 1 2 3 4 ttgC ttgB ttgR ttgA ttgE ttgF ttgT ttgD -tol +tol A C G T ttgI ttgW ttgH ttgV ttgG
CH CH CH CH CH 3 3 3 3 3 TtgC Outer membrane TtgA Periplasmic space TtgB CH 3 Inner membrane ?
A G T C 1 2 3 4 ttgC ttgB ttgR ttgA ttgE ttgF ttgT ttgD -tol +tol A C G T ttgI ttgW ttgH ttgV ttgG
20 40 0 20 20 20 40 40 40 0 0 0 TtgDEF TtgGHI Wild-type TtgABC 9 5 Viable cells (log CFU ml-1) DOT-T1E-18 DOT-T1E-28 DOT-T1E DOT-T1E-1 Time (min)
A G T C 1 2 3 4 ttgC ttgB ttgR ttgA ttgE ttgF ttgT ttgD -tol +tol A C G T ttgI ttgW ttgH ttgV ttgG
PttgABC T T T A C A A A C A A C C A T G A A T G T A A G T A T A T T PttgR G G A A T A T A C T T A C A T T C A T G G T T G T T T G T A A -35 PttgABC-PttgR DNA (10nM) -10 B2 B1 0 TtgR (nM) 1000 U +1 -10
Substrates TtgABC TtgDEF TtgGHI Toluene Styrene m-xylene Propylbenzene Ethylbenzene + + - - - + + + + + + + + + + + + + - + + + + + - + + Tetracycline Ampicillin Chloramphenicol Gentamicin Nalidixic Carbenicillin - - - - - -
20 40 0 20 20 40 40 0 9 5 Viable cells (log CFU ml-1) DOT-T1E-18 DOT-T1E-109 DOT-T1E 0 Time (min)
Expression of solvent-tolerant efflux pumps in the wild-type and the TtgJ mutant background Strain Fusion -galactosidase (Units) -Toluene +Toluene Wild-type PttgA:lacZ 50 70 PttgD:lacZ 10 20 PttgG:lacZ 400 1000 DOT-T1E-109 PttgA:lacZ 70 110 PttgD:lacZ 210 1600 PttgG:lacZ 1000 3750
Incorporation of 1,2,4-[14C]-trichlorobenzene into membranes of P. putida cells Culture Conditions 14C/mg cell protein DOT-T1-109 Wild-type LB 20.000 30.000 LB+ toluene 30.000 82.000
109+tolueno 109
120 120 120 120 5 5 5 5 30 30 30 30 60 60 60 60 Incorporation of 13C-acetate in fatty acids T1E +tol T1E 109 109+tol 8 7 6 5 Relative increase of 13C 4 3 2 1
The TtgJ protein 1 198 433 467 565 272 Fatty acid Acyl-CoA synthetase motif ATP-binding P-loop motif The TtgJ protein exhibits 38-45% similarity with the FadD protein of several microorganisms, i.e. Pseudomonas putida, Pseudomonas aeruginosa, Bacillus subtilis, Mycobacterium tuberculosis, etc The TtgJ protein exhibits 42% identity with an orf of Pseudomonas aeruginosa that probably encodes for an acetyl-CoA synthetase The TtgJ protein does not complement an E.coli fadD mutant
120 120 120 120 5 5 5 5 30 30 30 30 60 60 60 60 Incorporation of 13C in proteins T1E +tol T1E 109 109+tol 8 7 6 5 Relative increase of 13C 4 3 2 1
Signal-CoA TtgJ Signal -X Inhibits biosynthesis of phospholipids Estimulates transcription of ttgDEF/ttgGHI
Conclusions • Biosynthesis of fatty acids is essential for solvent tolerance. In a ttgJ mutant background in which fatty acid biosynthesis is impeded, blebs are formed and cells become extremely solvent sensitive. • Three efflux pumps are involved in solvent tolerance. Two of the pumps (TtgDEF and TtgGHI) are overexpressed in a mutant background deficient in the TtgJ protein. • The TtgJ protein, that exhibits features of acyl-CoA synthases, might function as a sensor system for alarmone molecules produced in response to the presence of solvents
Solvent-tolerant bacteria allowing a broader performance of biotransformations of organic compounds in two-phases fermentation systems EEZ
O2 O2 X F C1 C2 B A D E G I H S T NAD+ (todD) NADH+H+ CH 3 toluene ISPTOL NAD+ FerredoxinTOL ReductaseTOL (todC1C2) (todB) (todA) NADH+H+ FerredoxinTOL ReductaseTOL ISPTOL CH 3 H OH OH H cis-toluene dihydrodiol CH 3 OH OH 3-Methylcatechol (todE) Ring fission
Plasmid pWWO Tra/Rep C H L B J K R F A M T J O C tnpA I G N N (Tn 4653 ) tnpT S X K B pWW0 tnpS 117 kb G H res B E xylR H H tnpA I xylS Operón (Tn 4651 ) F upper V Operón D F meta Q G D E I D J XhoI C A E EcoRI P A HindIII Tn4653 Tn4651 EEZ
xyl U W C M A B N Pu COOH CHO CH CH2OH 3 xylC xylB xylMA R1 R1 R1 R1 R2 R2 R2 R2 xyl X Y Z L E G F J Q K I H Pm OH COOH CO2 OH OH HOOC OH OH COOH OH H O xylE xylXYZ xylL COOH R1 R1 R1 xylG R1 COOH R2 R2 R2 R2 R2 xylF R1COOH xylH O O O CH3COCOOH COOH COOH xylK COOH xylJ xylI + COOH R2CH2CHO EEZ OH CO2 R2 R2 R2
s s s 70 70 70 - + xyl U W C M A B N Pu xyl X Y Z L E G F J Q K I H xyl S R Pm s 54 s s 70 38 / s 54 Toluene degradation pathway encoded inplasmid pWWO CH OH COOH OH 3 OH COOH O Krebs cycle B MA C XYZ+L E F... H OH 3- Methyl-benzoate - xyl Ps2 Ps1 Pr1 Pr2 + - + + HU IHF EEZ xylene
xyl X Y Z L E G F J Q K I H xyl U W C M A B N Pu Pm OH CH OH 3 R1 R1 R2 R2 xylE Sm Catechol and methylcatechol bioproduction xylCMABN xylXYZL pWW0 EEZ
COOH COOH CH 3 CH 3 R1 R1 R1 R2 R2 R2 R1 R2 OH COOH CO2 OH OH HOOC OH OH COOH OH H O xylXYZ xylL COOH R1 R1 R1 xylG R1 COOH R2 R2 R2 R2 R2 xylF xylH O O O CH3COCOOH COOH COOH xylK COOH xylJ xylI + COOH R2CH2CHO OH CO2 R2 R2 R2 Nitrobenzoates synthesis xyl X Y Z L E G F J Q K I H xyl U W C M A B N Pu Pm CHO CH2OH xylC xylB xylMA R1 R1 R2 R2 xylE R1COOH EEZ
xylC COOH CH COOH CH 3 3 xylUWCMABN NO2 NO2 NO2 NO2 xyl S xylR xyl U W C M A B N xyl X Y Z L E G F J Q K I H Ps1-2 Pr1-2 Pu Pm STOP Toluenes Benzyl-alcohol p-chlorobenzaldehyde p-nitrotoluene m-nitrotoluene Nitrobenzoates synthesis COOH CHO CH CH2OH 3 xylB xylMA EEZ
CHO CHO R1 R2 CH R1 3 R2 R1 xyl X Y Z L E G F J Q K I H Pm R2 p- and m-nitrobenzaldehydes synthesis xyl U W C M A B N Pu COOH CH CH2OH 3 xylC xylB xylMA R1 R1 R1 R2 R2 R2 COOH OH CO2 OH OH HOOC OH OH COOH OH H O xylE xylXYZ xylL COOH R1 R1 R1 xylG R1 COOH R2 R2 R2 R2 R2 xylF R1COOH xylH O O O CH3COCOOH COOH COOH xylK COOH xylJ xylI + EEZ COOH R2CH2CHO OH CO2 R2 R2 R2