1 / 31

Semantic-based Trajectory Data Mining Methods

Semantic-based Trajectory Data Mining Methods. Vania Bogorny INE – UFSC. C. R. C. R. H. H. H. R. C. Hotel. Restaurant. Cinema. Padrão SEMÂNTICO Hotel p/ Restaurante, passando por SC (b) Cinema, passando por SC. A importância de considerar a semântica. SC. T3. T3. T2. T2. T1.

bolger
Download Presentation

Semantic-based Trajectory Data Mining Methods

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semantic-based Trajectory Data Mining Methods Vania Bogorny INE – UFSC

  2. C R C R H H H R C Hotel Restaurant Cinema • Padrão SEMÂNTICO • Hotel p/ Restaurante, passando por SC • (b) Cinema, passando por SC A importância de considerar a semântica SC T3 T3 T2 T2 T1 T1 T4 T4 Padrão Geométrico

  3. Geometric Patterns X Semantic Patterns (Bogorny 2008) There is very little or no semantics in most DM approaches for trajectories Consequence: • Patterns are purely geometrical • Difficult to interpret from the user’s point of view • Do not discover semantic patterns, • which can be independent of spatial location

  4. Dados Geográficos Geografia + Trajetória Bruta = Trajetória Semântica Principal Problema: Falta de semântica Trajetórias Brutas (x,y,t)

  5. Motivada por um Modelo Conceitualpara Trajetórias

  6. end (Professor, EPFL, 1988-2010) (Professor, Dijon, 1983-1988) (Lecturer, Paris VI, 1972-1983) (Assistant, Paris VI, 1966-1972) begin Trajetória Metafórica (Spaccapietra 2008) Time position institution

  7. Modelagem Conceitual (EPFL, Suíça) Primeiro modelo conceitual para trajetórias: • STOP: parte importante de uma trajetória do ponto de vista de uma aplicação, considerando as seguintes restrições: • durante um stop o objeto móvel é considerado parado • O stop tem uma duração (tf - ti > 0) • MOVE: parte da trajetória entre 2 stops consecutivos ou entre um stop e o início/fim da trajetória 7

  8. The Model of Stops and Moves (Spaccapietra 2008) STOPS Important parts of trajectories Where the moving object has stayed for a minimal amount of time Stops are application dependent Tourism application Hotels, touristic places, airport, … Traffic Management Application Traffic lights, roundabouts, big events… MOVES Are the parts that are not stops

  9. Traveler location Trajectory Stop Moveƒ(T) IsIn Place Modelo de Stops e Moves 0:N list Has 1:1 2:N list hasStops 1:1 0:1 From 1:1 1:1 To 0:1 0:N 0:N

  10. Adicionando semântica às trajetórias: usando STOPS STOPS são dependentes da aplicação 1 2 Ibis Hotel [10:00-12:00]] Museu Louvre [13:00 – 17:00] Aeroporto [08:00 – 08:30] Torre Eifel [17:30 – 18:00] 3 Rótula [08:40 – 08:45] Congestionamento [09:00 – 09:15] Cruzamento [12:15 – 12:22] Aeroporto [08:00 – 08:30]

  11. Semantic Trajectories • A semantic trajectoryis a set of stops and moves • Stops have a place, a start time and an end time • Moves are characterized by two consecutive stops

  12. Métodos para instanciar o modelo de stops e moves e minerar trajetórias semanticas

  13. Methods to Compute Stops and Moves • IB-SMoT (INTERSECTION-based) • Interesting for applications like tourism and urban planning 2) CB-SMoT (SPEED-based clustering) Interesting for applications where the speed is important, like traffic management 3) DB-SMOT (DIRECTION-based clustering) Interesting in application where the direction variation is important like fishing activities

  14. IB-SMoT (Alvares 2007a) A candidate stopC is a tuple (RC, C), where RC is the geometry of the candidate stop (spatial feature type) C is the minimal time duration E.g. [Hotel - 3 hours] An applicationA is a finite set A = {C1 = (RC1 , C1 ), …, CN = (RCN , CN)} of candidate stops with non-overlapping geometries RC1, … ,RCN E.g. [Hotel - 3 hours, Museum – 1 hour]

  15. IB-SMoT Input: candidate stops // Application trajectories // trajectory samples Output: Method: For each trajectory Check if it intersects a candidat stop for a minimal amount of time Jurere 09-12 IbisH. 13-14 FloripaS 16-17 (Alvares 2007ª) Semantic rich trajectories

  16. Schema of Stops and Moves Tid Sid SFTname SFTid Sbegint Sendt 1 1 Hotel 1 08:25 08:40 1 2 TouristicPlace 3 09:05 09:30 1 3 TouristicPlace 3 10:01 14:20 Stops Moves Tid Mid S1id S2id geometry timest 1 1 1 2 48.888880 2.246102 08:41 1 1 1 2 48.885732 2.255031 08:42 ... ... ... ... ... ... 1 1 1 2 48.860021 2.336105 09:04 1 2 2 3 48.860515 2.349018 09:41 ... ... ... ... … ... 1 2 2 3 48.861112 2.334167 10:00 Touristic Place Hotel Id Name Stars geometry 1 Ibis 2 48.890015 2.246100, ... 2 Meridien 5 48.880005 2.283889, … Id Name Type geometry 1 Notre Dame Church 48.853611 2.349167,… 2 Eiffel Tower Monument 48.858330 2.294333,… 3 Louvre Museum 48.862220 2.335556,… Alvares (ACM-GIS 2007)

  17. Queries: Trajectory Samples X Stops and Moves Q2: How many trajectories go from a Hotel to at least one Touristic Place? SELECT distinct count(t.Tid) FROM trajectory t, trajectory u, hotel h, touristicPlace p WHERE intersects (t.geometry, h.geometry) AND Intersects (u.geometry, p.geometry) AND t.Tid=u.Tid AND u.timest>t.timest Trajectory samples Semantic Trajectories SELECT distinct count(a.Tid) FROM stop a, stop b WHERE a.SFTname='Hotel' AND b.SFTname='Touristic Place' AND a.Tid=b.Tid AND a.Sid < b.Sid No Spatial Join Alvares (ACM-GIS 2007)

  18. Queries: Trajectory Samples X Stops and Moves Q1: Which are the places that moving object A has passed during his trajectory? SELECT ‘Hotel’ as place FROM trajectory t, hotel h WHERE t.id='A' AND intersects (t.movingpoint.geometry,h.geometry) UNION SELECT ‘TouristicPlace’ as place FROM trajectory t, touristicPlace p WHERE t.id='A' AND intersects (t.movingpoint.geomtetry,p.geometry) UNION … SELECT SFTname as place FROM stop WHERE id='A‘ Alvares (ACM-GIS 2007)

  19. Queries: Trajectory Samples X Stops and Moves Q2: How many trajectories go from a Hotel to at least one Touristic Place? SELECT distinct count(t.Tid) FROM trajectory t, trajectory u, hotel h, touristicPlace p WHERE intersects (t.geometry, h.geometry) AND Intersects (u.geometry, p.geometry) AND t.Tid=u.Tid AND u.timest>t.timest Trajectory samples Semantic Trajectories SELECT distinct count(a.Tid) FROM stop a, stop b WHERE a.SFTname='Hotel' AND b.SFTname='Touristic Place' AND a.Tid=b.Tid AND a.Sid < b.Sid No Spatial Join Alvares (ACM-GIS 2007)

  20. Queries: Trajectory Samples X Stops and Moves Q4: Which are the Touristic Places that moving objects have passed and stayed for more than one hour? SELECT temp.name, count(*) AS n_visits FROM ( SELECT t.Tid, p.name FROM trajectory t, touristicplace p WHERE intersects (t.geometry,p.geometry) GROUP BY t.Tid, p.name HAVING count(t.*)>60) AS temp GROUP BY temp.name SELECT t.name, count(s.*) AS n_visits FROM stop s, touristicplace p WHERE s.SFTid=p.id AND (s.Sendt - s.Sbegint ) > 60 GROUP BY t.name No Spatial Join Alvares (ACM-GIS 2007)

  21. Unknown stop Jurere 09-12 IbisH. 13-14 2.1: If intersects  during t stop  FloripaS 16-17 2.2: If no intersection during t unknown stop CB-SMoT: Speed-based clustering (Palma 2008) Input: Trajectory samples Speed variation minTime Output: stops and moves Step 1: find clusters Step 2: Add semantics to each cluster Tutorial on Spatial and Spatio-Temporal Data Mining (ICDM 2010)

  22. Stops (Methods SMot and CB-SMoT)

  23. DB-SMOT : Direction-based Clustering (Manso 2010) Input: trajectories // trajectory samples minDirVariation // minimal direction variation minTime // minimum time maxTolerance Output: semantic rich trajectories Method: For each trajectory Find clusters with direction variation higher than minDirVariation For a minimal amount of time

  24. Resultados obtidos com os Métodos que Agregam Semântica – Trajetórias de Barcos de Pesca

  25. Resultados obtidos com os Metodos que Agregam Semântica – Trajetórias de Barcos de Pesca

  26. Works Summarized in this part of the Tutorial

  27. CONSTANT: Modelo mais recente para Trajetórias Semanticas (Bogorny et al. 2012)

More Related