560 likes | 719 Views
Hypernuclear Weak Decay Measurements with FINUDA Experiment. Simonetta Marcello Torino University Seminar @ JAEA Tokai- mura , October 26, 2010. OUTLINE. FINUDA Experiment Study of Hypernuclear Weak Decays Mesonic Weak Decays (MWD) Non- Mesonic Weak Decays (NMWD)
E N D
HypernuclearWeakDecayMeasurements with FINUDA Experiment Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 Simonetta Marcello Torino University Seminar @ JAEA Tokai-mura, October 26, 2010
OUTLINE • FINUDA Experiment • Study of Hypernuclear Weak Decays • Mesonic Weak Decays (MWD) • Non-Mesonic Weak Decays (NMWD) • Two body Rare Non-Mesonic Weak Decays Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010
DAFNE e+-e- Collider e+ e- e+- e- Beams of 510 MeV at the c.m. energy ofF (1020) meson circulating in two different rings collide in two interaction regions Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 DAFNE is a high luminosity F Factory L ~ 2.2x1032 cm-2s-1 ~ 900 F/s 8 pb-1/day
Φ Decays • neutral andcharged kaons • collinear (Back-to-Back) and tagged • monochromatic andlow energy Low Energy kaons can be stopped in Nuclear Targets Ekin 16 MeV SIDDHARTA K-N scattering rp 13% K+K- 49% Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 KLOE CP, CPT violation chiral dynamics … FINUDA Strangeness Nuclear Physics KSKL 34%
DAFNE e+-e- Collider DAFNE PeakLuminosityhistory 2001-2007 FINUDA RUN-2 FINUDA RUN-1 Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010
DAFNE e+-e- Collider DAFNE PeakLuminosityhistory 2000-2009 Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 FINUDA FINUDA In the last years further improvement in the Luminosity has been achieved L ~ 3÷4x1032 cm-2s-1 peak luminosity
RUN-2: October 2006 – June 2007 Daily integrated luminosity [nb-1] Integrated luminosity [nb-1] Average dailyintegrated luminosity ~7 pb-1 Stable Data Taking Integrated Luminosity ~ 1 fb-1 HYP events: ~ 5 millions Simonetta Marcello.TorinoUniversity -Seminar @ JAEA-October 2010
FINUDA Spectrometer @ DAΦNE Structure of a collider experiment • Large acceptance:> 2 p sr • B=1T omogeneous magnetic field within 2% TOFONE detector Mechanical frame Vertex/target Drift Chambers, Straw tubes Magnet end-caps
π- 6Li 6Li π- L p 7Li 12C K- K+ 12C 12C μ+ 51V 27Al Fixed TARGET Experiment FINUDA is a target experiment with cylindrical geometry 127 MeV/c 16 MeV 12.5 mrad e+ e-Φ K+ K- e+ K- are stopped in very thin targets Different Targets at the same time Φ e- Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 Not exactly at rest boost of 12.3 MeV/c
FINUDA Physics • HYPERNUCLEAR PHYSICS • Spectroscopy • Weak Decays • HADRON PHYSICS with STRANGENESS • Bound Kaonic Clusters K-stop + AZ ALZ + p- • Very thinnuclear targets (0.1 ÷ 0.3 g/cm2) • High Resolution Spectroscopy Dp/p = 0.6% • • Detection and full reconstruction of particles • • Coincidence measurement with large acceptance SIMULTANEOUSLY ON DIFFERENT TARGETS Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 • Detection and full reconstruction of particles • Very goodL identification
Hypernuclear Event K-stopAZ ALZ p- p- Forward track K+m+ nm Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 p- 6Li m+ K- F K+ Forward p-track
Detector capabilities • Selective triggerbased on fast scintillation detectors • CleanK-vertexidentification • ISIM P.ID.+x,y,zresolution + K+ tagging • p, K, p, d, t … Particle Identification (dE/dx) • High momentum resolution(6‰ FWHM) • tracker resolution+He bag+thin targets • 6‰ for - @270 MeV/c for spectroscopy • 1% for p- @270 MeV/c for decay study • 6% for - @110 MeV/c for mesonic decay study • 2% for p @400 MeV/c for non-mesonic decay study • Time-Of-Flight (TOF system) • Neutron detection (external Scintillator barrel) Simonetta Marcello.TorinoUniversity -Seminar @ JAEA-October 2010
FINUDA Data Takings RUN-1 2003-2004 Integrated Luminosity:190 pb-1one million of HYP events Targets: 2x6Li, 1x7Li, 3x12C, 1x27Al, 1x51V • 12Creference target for detector performance tuning • 27Al-- 51Vmedium-heavy nuclei for spectroscopic studies • 6Li-- 7Lisources of light hypernuclei RUN-2 2006-2007 Integrated Luminosity:~1 fb-1five millions of HYP events Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 Targets: 2x6Li, 2x7Li, 1x13C, 1x9Be, 1x16O Medium-light targets to allow a wider spectrum of physics: • hypernuclear spectroscopy • NRH spectroscopy • hypernuclear decay modes • bound kaonic states
Hypernuclear Weak Decays: Mesonic channels Free Space p + p- B.R. 63.9 % Gp-free n+ p0B.R. 35.8 % Gp0free Q ~ 38 MeV ; pN = pp~ 100 MeV/c Hamiltonian describes transitions with Δ I of 1/2 and 3/2 with comparable strengths BUT an enhancement in Δ I = 1/2 component is observed in free Y decays and K decays Δ I = ½ Rule ExpGp-free / Gp0free= 1.78 Gp-free / Gp0free= 2 pure Δ I = 1/2 Strong interaction corrections are added But not enough to account for such an enhancement Gp-free / Gp0free= 1/2 pure Δ I = 3/2 In the Nuclear Medium L p + p- Gp- QM < 38 MeV ; pN ~ 100 MeV/c < kF = 270 MeV/c Mesonic mode (MWD) is Pauli Blocked But still possible in finite nuclei L n + p0 Gp0
Hypernuclear Weak Decays: Non-Mesonic channels One-Nucleon induced Decays L p n p Gp QM ~ 176 MeV ; pN ~ 415 MeV/c > kF = 270 MeV/c Nucleon pairs mainly emitted back-to-back Difficult to measure neutrons, low efficiency L n n n Gn Two-Nucleon induced Decay L N N n N N G2N QM ~ 176 MeV pN ~ 340 MeV/c QM shared among the three Nucleons • Nucleons can escape the nucleus • Non-Mesonic mode (NMWD) is not Pauli Blocked • NMWD dominates over the Mesonic one for all hypernuclei, • but the lighter ones, where is in competition with the MWD • Final State Interaction (FSI) cannot be neglected in NMWD
Hypernuclear Weak Decays GTot = GM +GNM GM = Gp-+Gp0 ; GNM = Gp+ Gn+G2N t =ℏ / GTot hypernucleus lifetime • Hypernuclear decays: only way to get information on LN NN • Extension of NN NN weak interaction with ΔS = 0, in particular on the • parity conserving part of the Hamiltonian (masked by strong interaction) • No experimental observation of L N NN using L beams. • Possible to study the reverse reaction pn p L, • but not feasible very low s ~ 10-12mb Simonetta Marcello, JSPS Fellow, Kyoto University-Intensive Lectures-July 29-31, 2009
Hypernuclear Weak Decays: Non-Mesonic channels One Pion Exchange Model Not enough to explain Gn / Gp ratio Massive mesons (r, K, K*, h and w) have been included to explain interaction at short distances N N One Meson Exchange Model p, r, w, h, K , K* One-Nucleon induced Decays N N N Simonetta Marcello, JSPS Fellow, Kyoto University-Intensive Lectures-July 29-31, 2009 p, r, w, h, K , K* L N Two-Nucleon induced Decay Hybrid models adopting direct quark mechanisms in addition to meson-exchange potential have been used L N N
PHYSICS MOTIVATIONS • Mesonic Weak Decays • p-nucleus optical potential, the low energy p probes the nuclear structurepossibile to discriminate among different potential models • (instead of studying p-nucleus scattering or X-rays from pionic atoms) • Enhancement of the p-mesonic decay rates due to the pion wave distortion higher momentum available for the Nucleon • Jpassignment hypernuclei, strong dependence of the two-body p- decay Branching Ratios on the ground state spin: new indirect spectroscopic tool
PHYSICS MOTIVATIONS • Non-Mesonic Weak Decays • 4-baryon strangeness changing weak interaction give the possibility to investigate both the parity violating and the parity conserving contributions to the Hamiltonian (in NN NN the latter one is masked by the strong interaction) • DI=1/2 rule • Gn/Gppuzzle • G2N and Final State Interactions (FSI) contributions
p - Study of Weak Decays with FINUDA Coincidence measurement charged Mesonic channel charged Non-Mesonic channel K-stop + AZ ALZ + p- ALZA(Z+1) + p- K-stop + AZ ALZ+p- ALZA-2(Z-1) + p + n S-EX 260-280 MeV/c MWD 80-110 MeV/c NMWD 170-600 MeV/c - - Simonetta Marcello.TorinoUniversity -Seminar @ JAEA-October 2010
Mesonic weak Decays p-shell hypernuclei • MWD strictly forbidden in infinite nuclear matter (pN~ 100 MeV/c) • p feels attraction in nuclear medium due to the p-wave part of the optical potential (p distortions) • dispersion relation modified inside the nucleus • pioncarries lower energy for fixed momentum q: Ep ≤ √(q2+mp2) • Energy conservation: highermomentumavailablefor the final nucleonwhichhas more chance toovercome the Fermi momentum • theoretical calculations with pion distorted wave predict MWD to be less suppressed for p-shell (A~10) • Enhancementof MWD due topionwavedistortion: • Bando et al., Progr. Theor. Phys. Suppl. 72 (1984) 109 • Osetet al., NPA 443 (1985) 704 • Extensivecalculations: • Motobaet al., Prog. Theor. Phys. Suppl. 117 (1994) 477 • Gal Nucl. Phys. A 828 (2009) 72 Pauli Blocking is less effective in the medium ! Simonetta Marcello.TorinoUniversity -Seminar @ JAEA-October 2010
StudyofMesonicDecays • Not Pauli blocked in Light p-shell Hypernuclei • Can provide information on spin-parity of the • initial hypernuclear ground state K- + AZ ALZ + p– Hypernucleus Formation high p– momentum ~ 270 MeV/c In the bound region from the ground state peak Δp/p =1% FWHM Cuts are reduced ALZ A(Z + 1) + p– Hypernucleus Decay low p– momentum ~ 100 MeV/c Simonetta Marcello.KyotoUniversity-IntensiveLectures-July 29-31, 2009 Short track reconstructed by means of 2 layers of Si-Microstrips and 1 layer of Low Mass Drift Chambers Δp/p =6% FWHM Only 3 points ALZ AZ + p0 p0 not detected in FINUDA
MWD Measurements: strategy Inclusive production p-spectrum background corrected LONG TRACKS (4 points) Dp/p ~ 1% in the region 260-280 MeV/c 11LB Background under formationpeak K-(np) S- p S- n p- 12LC Branching Ratio BR p–= Gp– / G TOT BR p–= Np-decays/ NHYP SHORT TRACKS (in Si-Microvertex) Detection of p-down to ~ 80 MeV/c 11LB Decayp-spectrum background & acceptancecorrected p- Background under decaypeak Lqfdecay Simonetta Marcello.TorinoUniversity -Seminar @ JAEA-October 2010
StudyofMesonicDecays 7Li Target K- + 7Li 5LHe + d + p– K- + 7Li 5LHe + p + n + p– K- + 7Li 7LLi + p– (276 MeV/c) Mesonic Decay Mesonic Decay 7LLi 7Be + p– (107.7 MeV/c) 5LHe5Li + p– (99.3 MeV/c) Simonetta Marcello.KyotoUniversity-IntensiveLectures-July 29-31, 2009 MesonicWeakDecayofHypernucleiisimportantbecauseittakesplacedeeply inside the nucleus (since the Lis in s-shells1/2 ) and involves a low energyp, so it can sensitivelyprobe the structureofnuclearinterior
Jp assignment: 7LLi Agnello PLB 681 (2009) 139 7Be: 3/2-gs & 1/2- (429keV) • Correspondencewith the calculatedstrengthfunctions • T. Motobaet al, Progr. Theor. Phys. Suppl. 117 (1994) 477 • A. Gal, Nucl. Phys. A 828 (2009) 72 • Formationofdifferentexcitedstatesof the daughternucleus • Initialhypernucleusspin • Jπ(7LLig.s.) = 1/2+ Sasao, PLB 579 (2004) 258 3-body decays BR p–= 0.315 ± 0.041 T. Motoba (Private Communication)) Gal NPA 828 (2009) 72
Jp assignment: 9LBe 9B: 3/2-gs & 1/2-(2.75 MeV) DT ~ 4 MeV FWHM @38 MeV • Correspondencewith the calculatedstrengthfunctions • T. Motobaet al, Progr. Theor. Phys. Suppl. 117 (1994) 477 • A. Gal, Nucl. Phys. A 828 (2009) 72 • Initialhypernucleusspin • Jπ(9LBeg.s.) = 1/2+ • O.Hashimoto NPA 639 (1998) 93c Agnello PLB 681 (2009) 139 BR p–= 0.154 ± 0.040 T. Motoba (Private Communication))
Jp assignment: 11LB Agnello PLB 681 (2009) 139 • Correspondence with the calculated strength functions • H. Bando et al, Pers. Meson Science (1992) 571 • A. Gal, Nucl. Phys A 828 (2009) 72 • Two contributions of 11C 5/2- ground state • and 7/2- excited state • Initial hypernucleus spin • Jπ(11ΛBg.s.) = 5/2+: experimental confirmation • Sato et al., PRC 71 (2005) 025203 by different observable 11C: 3/2-gs & 7/2- (~6.5 MeV) BR p–= 0.199 ± 0.039 T. Motoba (Private Communication)
Jp assignment: 15LN Agnello PLB 681 (2009) 139 • Correspondence with the calculated strength functions • T. Motoba et al, Nucl. Phys. A 489 (1988) 683 • A. Gal, Nucl. Phys. A 828 (2009) 72 • 15ΛNg.s spin not known. Jπ(15ΛNg.s.) = 3/2+ • D.J.Millener, A.Gal, C.B.Dover Phys. Rev. C 31 (1985) 499 • Spin ordering not obtained from g-rays of 16LO • M.Ukai et al. Phys. Rev.C 77 (2008) 054315. • First experimental determination of • Jπ(15ΛNg.s.) = 3/2+ from decay rate value and spectrum shape 15O: 1/2-gs & sd(~6 MeV) BR p–= 0.085 ± 0.028 T. Motoba NPA 489 (1988) 683.
Mesonic decay ratio: Gp- / GL Gp- / GL= Gtot / GL BRp- Gtot/GL= (0.990±0.094) + (0.018±0.010) A BRp- = Np-decays/ NHYP present data T. Motoba PTPS 117 (1994) 477 previous data fit from measured values for A=4-12 hypernuclei [Sasao et al., PLB579(2004)258] A.Gal NPA 828 (2009) 72 p distortion, MWD enhancement proved ! strong nuclear structure effect A
Hypernuclear Weak Decays: Gn / Gp Ratio What about ΔI = ½ rule for L decay in the medium ? L n n n L p n p L N N n NN Gn/ Gp= 1/2 for pure ΔI = 1/2 Gn/ Gp= 2 for pure ΔI = 3/2 Most studied systems: 5LHe and12LC For a long time large experimental values have been measured (1 ÷ 2) indicating a possible violation of ΔI = ½ rule in hypernuclear decays and small theoretical values have been predicted (OPE model 0.1 ÷ 0.2) The analysis of Gn / Gp ratio is influenced by the two-nucleon induced process, whose experimental identification is rather difficult
Hypernuclear Weak Decays: Gn /Gp Ratio New experimental measurements and progress in theoretical models contributed to solve the Gn / Gp ”Puzzle” 5LHe 12LC First measurement of nucleon-coincidence spectra and angular correlation (BtoB) Gn / Gp≈ 0.4 - 0.5 Outa et al., NPA754 (2005) 157c, Kang et al., PRL96(2006)062301 L n n n L p n p L N N n N N Significant contribution of two-Nucleon induced decay and FSI (non-BtoB kinematics)quenching of N yields ~ 40% Bhang et al., EPJ A33 (2007) 259 Theoretical improvements: havier mesons, interaction terms which violate ΔI=1/2 rule, quark degree of freedoms for the short range baryon-baryon interactionGn / Gp≈ 0.3-0.7 Sasaki et al., NPA669 (2000) 331 Parreno and Ramos, PRC65(2002)015204
π- and proton spectra from 12ΛC NMWD 12C Spectrum of negative pions for events with a proton detected in coincidence red peak at 272 MeV/c (12ΛC ground state) π- spectrum in coincidence with p Simulation of the background reaction K- n p Σ- p followed by the decayΣ- nπ- Fermi momentum distribution for nucleons selection criteria and quality cuts as for real data RUN-1 Acceptance corrected Not acceptance corrected Not acceptance corrected 339 events 339 events proton spectra in coincidence with π- peak Simulated background
π- and proton spectra from 12ΛC NMWD 12C proton spectrum in coincidence with π- peak π- spectrum in coincidence with p simulation + reconstruction + selection + normalization RUN-1 background subtracted proton spectrum in coincidence with π- peak normalization region coincidence K- npS-p S-n π- Short tracks protonThreshold = 15 MeV M. Agnello et al., NPA 804 (2008), 151 15 MeV
269 MeV/c 275 MeV/c π- and proton spectra from 7ΛLi NMWD π- spectrum in coincidence with p • K- stopped in 7Li target can produce: 7ΛLi, (6ΛHe+p), (5ΛHe+d), (4ΛHe+t), (3ΛHe+α) • 275 MeV/c peak is consistent with 7ΛLi g.s. • 269 MeV/c peak is consistent with 5ΛHe+d pmax = 272,67 MeV/c ΔBΛ = 3.98 MeV 7Li RUN-2 Simulation of the background K- np → Σ-p followed by Σ- → nπ- proton spectrum in coincidence with π- peak (275MeV/c) background subtracted proton spectrum in coincidence with π- peak (275MeV/c) Simulated background Acceptance Corrected
269 MeV/c 275 MeV/c 7Li - π- and proton spectra from 5ΛHe NMWD K-stop + 7Li 5ΛHe + d + π- π- spectrum in coincidence with p 7Li • Enhancement of the low energy region FSI and 2 Nucleons induced effects • Bulk of the signal at 80 MeV • (~ Q/2 value of the reaction) RUN-2 Simulation of the background K- np → Σ-p followed by Σ- → nπ- proton spectrum in coincidence with π- peak (269MeV/c) background subtracted proton spectrum in coincidence with π- peak (269MeV/c) Simulated background Acceptance Corrected
6Li - π- and proton spectra from 5ΛHe NMWD K-stop + 6Li 5ΛHe + p + π- π- spectrum in coincidence with p 6Li Simulation of the background for the 2 Nucleons absorption take into account the cluster substructure of 6Li as (a + d) molecule 275 MeV/c RUN-2 Momentum distribution of the deuteron inside 6Li T. Yamazaki and Y. Akaishi NP A792 (2007 )229 background subtracted proton spectrum in coincidence with π- peak proton spectrum in coincidence with π- peak Simulated background Acceptance Corrected
5ΛHe, 7ΛLi and 12ΛCproton spectra 5LHe 7LLi • Similar shape for 5LHe, 7LLi and 12LC • Peak at ~ 80 MeV (Q/2 value), broadened by • N Fermi motion, visible even for 12LC • no strong FSI effect in low energy region • FSI & 2N contribution in the low energy region? 12LC
Comparison with KEK experimental data FINUDA: NPA 804 (2008)151 KEK E462/E508: PLB 597 (2004)249 5ΛHe:FINUDA vs KEK 12ΛC:FINUDA vs KEK normalization beyond 35 MeV (KEK data threshold) Agreement for 5LHe, not for 12LC • KEK: thick targets strong correction • FINUDA: thin targets & transparent detectors • KEK: p energy from TOF and range + dE/dx • poorenergyresolutionabove 100 MeV, distortion • FINUDA: p momentum from magnetic analysis • 2% energy resolution FWHM @ 80 MeV, no distortion
12ΛC Theoretical curve Garbarino,(P.R.C 69 054603 [2004]) FINUDA proton spectra KEK 5ΛHe Theoretical curve (Garbarino,Phys. Rev. C 69 054603 [2004]) FINUDA proton spectra KEK Comparison with theoretical calculations normalization beyond 15 MeV (FINUDA data threshold) • New data important to constrain theories in low energy region • 12ΛC: FSI and two-nucleons induced NMWD appear to be too strong to reproduce the data (low energy peak + excess smearing) Comparison with theoretical models not satisfactory for 12LC Lnp nnp strongly quenches the nucleon yields H. Bhang et al., EPJ A33 (2007) 259
NMWD proton spectra p-shell hypernuclei Background subtracted & acceptance corrected M.Agnello et al., PLB 685 (2010) 247 5ΛHe 7ΛLi 9ΛBe 11ΛB Simonetta Marcello.Torino University -Seminar @ JAEA-October 2010 12ΛC 13ΛC 15ΛN 16ΛO
NMWD: G2N L N N n N N NMWD p FINUDA, PLB 685 (2010) 247 gaussian fit free m 12LC mfrom fit Alow Ahigh Alow: spectrum area belowm 1N + 2N + FSI assumption W.Alberico and G.Garbarino, Phys. Rev. 369 (2002) 1 Ahigh: spectrum area abovem 1N + FSI 2N(>70 MeV) ~ 5% 2Ntot G,Garbarino, A.Parreno and A.Ramos, Phys.Rev.Lett. 91 (2003) 112501. Phys.Rev. C 69 (2004) 054603 assumption G2N/GNMWD & Gn/Gp not depend on A
NMWD: G2N FSI & LNN contribution evaluation: systematics 5ΛHe 7ΛLi 9ΛBe 11ΛB 12ΛC 13ΛC 15ΛN 16ΛO
NMWD: G2N FSI & LNN contribution evaluation Alow = 0.5 N(Lpnp) + N(Lnpnnp) + NpFSI-low Ahigh = 0.5 N(Lpnp) + NpFSI-high 12LC Alow assumption mfrom fit Alow N(Lnpnnp) Gnp G2N 0.5 = ≈ Ahigh Alow + Ahigh Gp Gnp : Gpp:Gnn= 0.83 : 0.12 : 0.04 E. Bauer and G.Garbarino, Nucl.Phys. A 828 (2009), 29. N(Lpnp) Gp N(Lnp nnp) + NpFSI-low N(Lpnp) + R = = N(Lnpnnp) + NpFSI-low + NpFSI-high N(Lpnp) +
Rare Two-Body • Non Mesonic Decays
Two body non mesonic decays of light hypernuclei • Non-mesonicdecaysof light hypernuclei (A<12) are not the favoureddecaychannels • Mesonicdecays play a largerrole • Two-body non mesonicdecay: largemomentum transfer (QVal~170 MeV) • Unlikelytooccur→ rare events • Expected branching ratios: at the levelof1.5% ofallnon-mesonicdecays • calculationsfor4ΛHe3He n, p t, d d [Rayet Nuovo Cim. 42B (1968), 238] • Veryfew and sparse observations • Mainlyfrombubblechamber/emulsionexperiments, for4ΛHe • Extremelypoorstatistics, a fewevents • No 4ΛHe→pt • A few4ΛHe→ 3He n : 8-14%ofallidentified NM decaysof4ΛHe • Corenmanset al. (1968), unpublished • Block PRL 3(1959), 291 • One4ΛHe→ddevent • Block et al. (1960) • One5ΛHe→dtevent • Keyeset al. Nuovo Cimento (1976)
p d t d mips t p dE/dx p.id. TOF p.id. Light hypernuclei decays in FINUDA • large angular coverage (~4π) • Excellent particle identification for charged hadrons • Good momentum resolution • Capability to fully reconstruct the event topologies • Set of several targets allowing the production of different hypernuclei and hypernuclear fragments • 4ΛHe hyperfragments production, from all targets • 4ΛHe → d d • d momentum: 570 MeV/c • 4ΛHe → p t • p momentum: 508 MeV/c • 5ΛHe hypernucleus formation • From 6Li targets: K- 6Li → 5ΛHe + p + π-(π- momentum: 275.15 MeV/c) • From 7Li targets: K-7Li → 5ΛHe + d + π- • NM two-body decay: 5ΛHe → d t • d momentum: 597 MeV/c • 4ΛHe → n 3He • Not detectable
Forward d Dp/p = 3% Backward d Dp/p = 4% 4ΛHe→dd decays Analyzed data: 954 pb-1, 2006-2007 data taking Expected event features: • 2 deuteron tracks of 570 MeV/c • Back-to-back deuteron tracks • possible 4ΛHe formation π- • for the formation of the 4ΛHe g.s. hypernucleus in 4He target: pπ=255 MeV/c π- d d
4ΛHe→pt decays • Lowerthresholdfortriton detection in FINUDA: 550 MeV/c • 508 MeV/c tritonscannotbeobserved ! • Missingtritonanalysis • oneprotonwithmomentum in the range (498-540) MeV/c • one high momentumπ- • Missing mass for the (A - 4ΛHe - p - π-) system compatiblewithone (missing) triton + residualnucleus • Large background contributionfromK-(np) → Σ-p: • capture rate 1.62%/K-stop in 6Li (NPA 775 (2006), 35) • Stringentcutstobeapplied on: • secondaryvertices • π- impact parameter (rejection 79%) • angulardistributions (backwardpeaked) • (pπ-) invariant mass torejectL fromconversionreactions