1 / 131

CSCE 930 Advanced Computer Architecture Introductions

CSCE 930 Advanced Computer Architecture Introductions . Adopted from Professor David Patterson & David Culler Electrical Engineering and Computer Sciences University of California, Berkeley. Outline. Computer Science at a Crossroads: Parallelism Architecture: multi-core and many-cores

boris
Download Presentation

CSCE 930 Advanced Computer Architecture Introductions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSCE 930 Advanced Computer Architecture Introductions Adopted from Professor David Patterson & David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

  2. Outline • Computer Science at a Crossroads: Parallelism • Architecture: multi-core and many-cores • Program: multi-threading • Parallel Architecture • What is Parallel Architecture? • Why Parallel Architecture? • Evolution and Convergence of Parallel Architectures • Fundamental Design Issues • Parallel Programs • Why bother with programs? • Important for whom? • Memory & Storage Subsystem Architectures CSCE930-Advanced Computer Architecture, Introduction

  3. Crossroads: Conventional Wisdom in Comp. Arch • Old Conventional Wisdom: Power is free, Transistors expensive • New Conventional Wisdom: “Power wall” Power expensive, Xtors free (Can put more on chip than can afford to turn on) • Old CW: Sufficiently increasing Instruction Level Parallelism via compilers, innovation (Out-of-order, speculation, VLIW, …) • New CW: “ILP wall” law of diminishing returns on more HW for ILP • Old CW: Multiplies are slow, Memory access is fast • New CW: “Memory wall” Memory slow, multiplies fast(200 clock cycles to DRAM memory, 4 clocks for multiply) • Old CW: Uniprocessor performance 2X / 1.5 yrs • New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall • Uniprocessor performance now 2X / 5(?) yrs  Sea change in chip design: multiple “cores” (2X processors per chip / ~ 2 years) • More simpler processors are more power efficient CSCE930-Advanced Computer Architecture, Introduction

  4. Crossroads: Uniprocessor Performance From Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, October, 2006 • VAX : 25%/year 1978 to 1986 • RISC + x86: 52%/year 1986 to 2002 • RISC + x86: ??%/year 2002 to present CSCE930-Advanced Computer Architecture, Introduction

  5. Sea Change in Chip Design • Intel 4004 (1971): 4-bit processor,2312 transistors, 0.4 MHz, 10 micron PMOS, 11 mm2 chip • RISC II (1983): 32-bit, 5 stage pipeline, 40,760 transistors, 3 MHz, 3 micron NMOS, 60 mm2 chip • 125 mm2 chip, 0.065 micron CMOS = 2312 RISC II+FPU+Icache+Dcache • RISC II shrinks to ~ 0.02 mm2 at 65 nm • Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ? • Proximity Communication via capacitive coupling at > 1 TB/s ?(Ivan Sutherland @ Sun / Berkeley) • Processor is the new transistor? CSCE930-Advanced Computer Architecture, Introduction

  6. Déjà vu all over again? • Multiprocessors imminent in 1970s, ‘80s, ‘90s, … • “… today’s processors … are nearing an impasse as technologies approach the speed of light..” David Mitchell, The Transputer: The Time Is Now (1989) • Transputer was premature  Custom multiprocessors strove to lead uniprocessors Procrastination rewarded: 2X seq. perf. / 1.5 years • “We are dedicating all of our future product development to multicore designs. … This is a sea change in computing” Paul Otellini, President, Intel (2004) • Difference is all microprocessor companies switch to multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs)  Procrastination penalized: 2X sequential perf. / 5 yrs Biggest programming challenge: 1 to 2 CPUs CSCE930-Advanced Computer Architecture, Introduction

  7. Problems with Sea Change • Algorithms, Programming Languages, Compilers, Operating Systems, Architectures, Libraries, … not ready to supply Thread Level Parallelism or Data Level Parallelism for 1000 CPUs / chip, • Architectures not ready for 1000 CPUs / chip • Unlike Instruction Level Parallelism, cannot be solved by just by computer architects and compiler writers alone, but also cannot be solved without participation of computer architects • This course explores ISL (Instruction Level Parallelism) and its shift to Thread Level Parallelism / Data Level Parallelism CSCE930-Advanced Computer Architecture, Introduction

  8. Outline • Computer Science at a Crossroads: Parallelism • Architecture: multi-core and many-cores • Program: multi-threading • Parallel Architecture • What is Parallel Architecture? • Why Parallel Architecture? • Evolution and Convergence of Parallel Architectures • Fundamental Design Issues • Parallel Programs • Why bother with programs? • Important for whom? • Memory & Storage Subsystem Architectures CSCE930-Advanced Computer Architecture, Introduction

  9. What is Parallel Architecture? • A parallel computer is a collection of processing elements that cooperate to solve large problems fast • Some broad issues: • Resource Allocation: • how large a collection? • how powerful are the elements? • how much memory? • Data access, Communication and Synchronization • how do the elements cooperate and communicate? • how are data transmitted between processors? • what are the abstractions and primitives for cooperation? • Performance and Scalability • how does it all translate into performance? • how does it scale? CSCE930-Advanced Computer Architecture, Introduction

  10. Why Study Parallel Architecture? • Role of a computer architect: • To design and engineer the various levels of a computer system to maximize performance and programmability within limits of technology and cost. • Parallelism: • Provides alternative to faster clock for performance • Applies at all levels of system design • Is a fascinating perspective from which to view architecture • Is increasingly central in information processing CSCE930-Advanced Computer Architecture, Introduction

  11. Why Study it Today? • History: diverse and innovative organizational structures, often tied to novel programming models • Rapidly maturing under strong technological constraints • The “killer micro” is ubiquitous • Laptops and supercomputers are fundamentally similar! • Technological trends cause diverse approaches to converge • Technological trends make parallel computing inevitable • In the mainstream with the reality of multi-cores and many-cores • Need to understand fundamental principles and design tradeoffs, not just taxonomies • Naming, Ordering, Replication, Communication performance CSCE930-Advanced Computer Architecture, Introduction

  12. Inevitability of Parallel Computing • Application demands: Our insatiable need for computing cycles • Scientific computing: VR simulations in Biology, Chemistry, Physics, ... • General-purpose computing: Video, Graphics, CAD, Databases, AR, VI, TP... • Technology Trends • Number of cores on chip growing rapidly (New Moors Law) • Clock rates expected to go up only slowly (tech. wall) • Architecture Trends • Instruction-level parallelism valuable but limited • Coarser-level parallelism, or thread-level parallelism, the most viable approach • Economics • Current trends: • Today’s microprocessors are multiprocessors CSCE930-Advanced Computer Architecture, Introduction

  13. Performance (p processors) Performance (1 processor) Application Trends • Demand for cycles fuels advances in hardware, and vice-versa • Cycle drives exponential increase in microprocessor performance • Drives parallel architecture harder: most demanding applications • Range of performance demands • Need range of system performance with progressively increasing cost • Platform pyramid • Goal of applications in using parallel machines: Speedup • Speedup (p processors) = • For a fixed problem size (input data set), performance = 1/time • Speedup fixed problem (p processors) = Time (1 processor) Time (p processors) CSCE930-Advanced Computer Architecture, Introduction

  14. Scientific Computing Demand CSCE930-Advanced Computer Architecture, Introduction

  15. Engineering Computing Demand • Large parallel machines a mainstay in many industries • Petroleum (reservoir analysis) • Automotive (crash simulation, drag analysis, combustion efficiency), • Aeronautics (airflow analysis, engine efficiency, structural mechanics, electromagnetism), • Computer-aided design • Pharmaceuticals (molecular modeling) • Visualization • In all of the above • Entertainment (3D films like Avatar & 3D games ) • Architecture (walk-throughs and rendering) • Virtual Reality/Immersion (museums, teleporting, etc) • Financial modeling (yield and derivative analysis) • Etc. CSCE930-Advanced Computer Architecture, Introduction

  16. Learning Curve for Parallel Applications • AMBER molecular dynamics simulation program • Starting point was vector code for Cray-1 • 145 MFLOP on Cray90, 406 for final version on 128-processor Paragon, 891 on 128-processor Cray T3D CSCE930-Advanced Computer Architecture, Introduction

  17. Commercial Computing • Also relies on parallelism for high end • Scale not so large, but use much more wide-spread • Computational power determines scale of business that can be handled • Databases, online-transaction processing, decision support, data mining, data warehousing ... • TPC benchmarks (TPC-C order entry, TPC-D decision support) • Explicit scaling criteria provided • Size of enterprise scales with size of system • Problem size no longer fixed as p increases, so throughput is used as a performance measure (transactions per minute or tpm) CSCE930-Advanced Computer Architecture, Introduction

  18. Similar Story for Storage • Divergence between memory capacity and speed more pronounced • Capacity increased by 1000x from 1980-95, speed only 2x • Gigabit DRAM by c. 2000, but gap with processor speed much greater • Larger memories are slower, while processors get faster • Need to transfer more data in parallel • Need deeper cache hierarchies • How to organize caches? • Parallelism increases effective size of each level of hierarchy, without increasing access time • Parallelism and locality within memory systems too • New designs fetch many bits within memory chip; follow with fast pipelined transfer across narrower interface • Buffer caches most recently accessed data • Disks too: Parallel disks plus caching CSCE930-Advanced Computer Architecture, Introduction

  19. Real-world applications demand high-performing and reliable storage High performance Computing Medicinal Image >100TB >100TB Digital body 1TB/body NASA H.B Glass 5GB/day >1PB

  20. >1PB GIS Ocean resource data >1PB Google, Yahoo, … >1PB/year >1PB Oil prospecting 1PB=1000TB=1015Bytes, It is equal to the capacity of 10,000 100GB disks.

  21. Technology Trends: Moore’s Law: 2X transistors / “year”  2X cores / “year” • “Cramming More Components onto Integrated Circuits” • Gordon Moore, Electronics, 1965 • # on transistors / cost-effective integrated circuit double every N months (12 ≤ N ≤ 24) CSCE930-Advanced Computer Architecture, Introduction

  22. Tracking Technology Performance Trends • Drill down into 4 technologies: • Disks, • Memory, • Network, • Processors • Compare ~1980 Archaic (Nostalgic) vs. ~2000 Modern (Newfangled) • Performance Milestones in each technology • Compare for Bandwidth vs. Latency improvements in performance over time • Bandwidth: number of events per unit time • E.g., M bits / second over network, M bytes / second from disk • Latency: elapsed time for a single event • E.g., one-way network delay in microseconds, average disk access time in milliseconds CSCE930-Advanced Computer Architecture, Introduction

  23. Seagate 373453, 2003 15000 RPM (4X) 73.4 GBytes (2500X) Tracks/Inch: 64000 (80X) Bits/Inch: 533,000 (60X) Four 2.5” platters (in 3.5” form factor) Bandwidth: 86 MBytes/sec (140X) Latency: 5.7 ms (8X) Cache: 8 MBytes CDC Wren I, 1983 3600 RPM 0.03 GBytes capacity Tracks/Inch: 800 Bits/Inch: 9550 Three 5.25” platters Bandwidth: 0.6 MBytes/sec Latency: 48.3 ms Cache: none Disks: Archaic(Nostalgic) v. Modern(Newfangled) CSCE930-Advanced Computer Architecture, Introduction

  24. Performance Milestones Disk: 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x) Latency Lags Bandwidth (for last ~20 years) (latency = simple operation w/o contention BW = best-case) CSCE930-Advanced Computer Architecture, Introduction

  25. 1980 DRAM(asynchronous) 0.06 Mbits/chip 64,000 xtors, 35 mm2 16-bit data bus per module, 16 pins/chip 13 Mbytes/sec Latency: 225 ns (no block transfer) 2000Double Data Rate Synchr. (clocked) DRAM 256.00 Mbits/chip (4000X) 256,000,000 xtors, 204 mm2 64-bit data bus per DIMM, 66 pins/chip (4X) 1600 Mbytes/sec (120X) Latency: 52 ns (4X) Block transfers (page mode) Memory: Archaic (Nostalgic) v. Modern (Newfangled) CSCE930-Advanced Computer Architecture, Introduction

  26. Performance Milestones Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x) Disk:3600, 5400, 7200, 10000, 15000 RPM (8x, 143x) Latency Lags Bandwidth (last ~20 years) (latency = simple operation w/o contention BW = best-case) CSCE930-Advanced Computer Architecture, Introduction

  27. Ethernet 802.3 Year of Standard: 1978 10 Mbits/s link speed Latency: 3000 msec Shared media Coaxial cable "Cat 5" is 4 twisted pairs in bundle Twisted Pair: Copper, 1mm thick, twisted to avoid antenna effect LANs: Archaic (Nostalgic)v. Modern (Newfangled) • Ethernet 802.3ae • Year of Standard: 2003 • 10,000 Mbits/s (1000X)link speed • Latency: 190 msec (15X) • Switched media • Category 5 copper wire Coaxial Cable: Plastic Covering Braided outer conductor Insulator Copper core CSCE930-Advanced Computer Architecture, Introduction

  28. Performance Milestones Ethernet: 10Mb, 100Mb, 1000Mb, 10000 Mb/s (16x,1000x) Memory Module:16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x) Disk:3600, 5400, 7200, 10000, 15000 RPM (8x, 143x) Latency Lags Bandwidth (last ~20 years) (latency = simple operation w/o contention BW = best-case) CSCE930-Advanced Computer Architecture, Introduction

  29. 1982 Intel 80286 12.5 MHz 2 MIPS (peak) Latency 320 ns 134,000 xtors, 47 mm2 16-bit data bus, 68 pins Microcode interpreter, separate FPU chip (no caches) 2001 Intel Pentium 4 1500MHz (120X) 4500 MIPS (peak) (2250X) Latency 15 ns (20X) 42,000,000 xtors, 217 mm2 64-bit data bus, 423 pins 3-way superscalar,Dynamic translate to RISC, Superpipelined (22 stage),Out-of-Order execution On-chip 8KB Data caches, 96KB Instr. Trace cache, 256KB L2 cache CPUs: Archaic (Nostalgic) v. Modern (Newfangled) CSCE930-Advanced Computer Architecture, Introduction

  30. Performance Milestones Processor: ‘286, ‘386, ‘486, Pentium, Pentium Pro, Pentium 4 (21x,2250x) Ethernet: 10Mb, 100Mb, 1000Mb, 10000 Mb/s (16x,1000x) Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x) Disk : 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x) CPU high, Memory low(“Memory Wall”) Latency Lags Bandwidth (last ~20 years) CSCE930-Advanced Computer Architecture, Introduction

  31. Rule of Thumb for Latency Lagging BW • In the time that bandwidth doubles, latency improves by no more than a factor of 1.2 to 1.4 (and capacity improves faster than bandwidth) • Stated alternatively: Bandwidth improves by more than the square of the improvement in Latency CSCE930-Advanced Computer Architecture, Introduction

  32. 6 Reasons LatencyLags Bandwidth 1. Moore’s Law helps BW more than latency • Faster transistors, more transistors, more pins help Bandwidth • MPU Transistors: 0.130 vs. 42 M xtors (300X) • DRAM Transistors: 0.064 vs. 256 M xtors (4000X) • MPU Pins: 68 vs. 423 pins (6X) • DRAM Pins: 16 vs. 66 pins (4X) • Smaller, faster transistors but communicate over (relatively) longer lines: limits latency • Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X) • MPU Die Size: 35 vs. 204 mm2 (ratio sqrt  2X) • DRAM Die Size: 47 vs. 217 mm2 (ratio sqrt  2X) CSCE930-Advanced Computer Architecture, Introduction

  33. 6 Reasons LatencyLags Bandwidth (cont’d) 2. Distance limits latency • Size of DRAM block long bit and word lines  most of DRAM access time • Speed of light and computers on network • 1. & 2. explains linear latency vs. square BW? 3. Bandwidth easier to sell (“bigger=better”) • E.g., 10 Gbits/s Ethernet (“10 Gig”) vs. 10 msec latency Ethernet • 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency • Even if just marketing, customers now trained • Since bandwidth sells, more resources thrown at bandwidth, which further tips the balance CSCE930-Advanced Computer Architecture, Introduction

  34. 6 Reasons LatencyLags Bandwidth (cont’d) 4. Latency helps BW, but not vice versa • Spinning disk faster improves both bandwidth and rotational latency • 3600 RPM  15000 RPM = 4.2X • Average rotational latency: 8.3 ms  2.0 ms • Things being equal, also helps BW by 4.2X • Lower DRAM latency More access/second (higher bandwidth) • Higher linear density helps disk BW (and capacity), but not disk Latency • 9,550 BPI  533,000 BPI 60X in BW CSCE930-Advanced Computer Architecture, Introduction

  35. 6 Reasons LatencyLags Bandwidth (cont’d) 5. Bandwidth hurts latency • Queues help Bandwidth, hurt Latency (Queuing Theory) • Adding chips to widen a memory module increases Bandwidth but higher fan-out on address lines may increase Latency 6. Operating System overhead hurts Latency more than Bandwidth • Long messages amortize overhead; overhead bigger part of short messages CSCE930-Advanced Computer Architecture, Introduction

  36. Summary of Technology Trends • For disk, LAN, memory, and microprocessor, bandwidth improves by square of latency improvement • In the time that bandwidth doubles, latency improves by no more than 1.2X to 1.4X • Lag probably even larger in real systems, as bandwidth gains multiplied by replicated components • Multiple processors in a cluster or even in a chip • Multiple disks in a disk array • Multiple memory modules in a large memory • Simultaneous communication in switched LAN • HW and SW developers should innovate assuming Latency Lags Bandwidth • If everything improves at the same rate, then nothing really changes • When rates vary, require real innovation CSCE930-Advanced Computer Architecture, Introduction

  37. Architectural Trends • Architecture translates technology’s gifts to performance and capability • Resolves the tradeoff between parallelism and locality • Current microprocessor: 1/4 compute, 1/2 cache, 1/4 off-chip connect • Tradeoffs may change with scale and technology advances • Four generations of architectural history: tube, transistor, IC, VLSI • Here focus only on VLSI generation • Greatest delineation in VLSI has been in type of parallelism exploited CSCE930-Advanced Computer Architecture, Introduction

  38. Architectural Trends • Greatest trend in VLSI generation is increase in parallelism • Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit • slows after 32 bit • adoption of 64-bit now under way, 128-bit far (not performance issue) • great inflection point when 32-bit micro and cache fit on a chip • Mid 80s to mid 90s: instruction level parallelism • pipelining and simple instruction sets, + compiler advances (RISC) • on-chip caches and functional units => superscalar execution • greater sophistication: out of order execution, speculation, prediction • to deal with control transfer and latency problems • Next step: thread level parallelism CSCE930-Advanced Computer Architecture, Introduction

  39. Architectural Trends: ILP • Reported speedups for superscalar processors • Horst, Harris, and Jardine [1990] ...................... 1.37 • Wang and Wu [1988] .......................................... 1.70 • Smith, Johnson, and Horowitz [1989] .............. 2.30 • Murakami et al. [1989] ........................................ 2.55 • Chang et al. [1991] ............................................. 2.90 • Jouppi and Wall [1989] ...................................... 3.20 • Lee, Kwok, and Briggs [1991] ........................... 3.50 • Wall [1991] .......................................................... 5 • Melvin and Patt [1991] ....................................... 8 • Butler et al. [1991] ............................................. 17+ • Large variance due to difference in • application domain investigated (numerical versus non-numerical) • capabilities of processor modeled CSCE930-Advanced Computer Architecture, Introduction

  40. ILP Ideal Potential • Infinite resources and fetch bandwidth, perfect branch prediction and renaming • real caches and non-zero miss latencies CSCE930-Advanced Computer Architecture, Introduction

  41. Results of ILP Studies • Concentrate on parallelism for 4-issue machines • Realistic studies show only 2-fold speedup • Recent studies show that more ILP needs to look across threads CSCE930-Advanced Computer Architecture, Introduction

  42. Architectural Trends: Bus-based MPs • Micro on a chip makes it natural to connect many to shared memory • dominates server and enterprise market, moving down to desktop • Faster processors began to saturate bus, then bus technology advanced • today, range of sizes for bus-based systems, desktop to large servers CSCE930-Advanced Computer Architecture, Introduction No. of processors in fully configured commercial shared-memory systems

  43. Economics • Commodity microprocessors not only fast but CHEAP • Development cost is tens of millions of dollars (5-100 typical) • BUT, many more are sold compared to supercomputers • Crucial to take advantage of the investment, and use the commodity building block • Exotic parallel architectures no more than special-purpose • Multiprocessors being pushed by software vendors (e.g. database) as well as hardware vendors • Standardization by Intel makes small, bus-based SMPs commodity • Desktop: few smaller processors versus one larger one? • Multiprocessor on a chip CSCE930-Advanced Computer Architecture, Introduction

  44. Consider Scientific Supercomputing • Proving ground and driver for innovative architecture and techniques • Market smaller relative to commercial as MPs become mainstream • Dominated by vector machines starting in 70s • Microprocessors have made huge gains in floating-point performance • high clock rates • pipelined floating point units (e.g., multiply-add every cycle) • instruction-level parallelism • effective use of caches (e.g., automatic blocking) • Plus economics • Large-scale multiprocessors replace vector supercomputers • Most top-performing machines on Top-500 list are multiprocessors CSCE930-Advanced Computer Architecture, Introduction

  45. Summary: Why Parallel Architecture? • Increasingly attractive • Economics, technology, architecture, application demand • Increasingly central and mainstream • Parallelism exploited at many levels • Instruction-level parallelism • Thread-level of parallelism (multi-cores and many-cores) • Application/Node-level of parallelism (“MPPs”, cluster, grids, clouds) • Focus of this class: thread-level of parallelism • Same story from memory/storage system perspective but with a “twist” (data-intensive computing, etc) • Wide range of parallel architectures make sense • Different cost, performance and scalability CSCE930-Advanced Computer Architecture, Introduction

  46. Convergence of Parallel Architectures CSCE930-Advanced Computer Architecture, Introduction

  47. History • Historically, parallel architectures tied to programming models • Divergent architectures, with no predictable pattern of growth. Application Software System Software Systolic Arrays SIMD Architecture Message Passing Dataflow Shared Memory • Uncertainty of direction paralyzed parallel software development! CSCE930-Advanced Computer Architecture, Introduction

  48. Today • Extension of “computer architecture” to support communication and cooperation • OLD: Instruction Set Architecture • NEW: Communication Architecture • Defines • Critical abstractions, boundaries, and primitives (interfaces) • Organizational structures that implement interfaces (hw or sw) • Compilers, libraries and OS are important bridges today CSCE930-Advanced Computer Architecture, Introduction

  49. CAD Database Scientific modeling Parallel applications Multipr ogramming Shar ed Message Data Pr ogramming models addr ess passing parallel Compilation Communication abstraction or library User/system boundary Operating systems support Har dwar e/softwar e boundary Communication har dwar e Physical communication medium Modern Layered Framework CSCE930-Advanced Computer Architecture, Introduction

  50. Programming Model • What programmer uses in coding applications • Specifies communication and synchronization • Examples: • Multiprogramming: no communication or synch. at program level • Shared address space: like bulletin board • Message passing: like letters or phone calls, explicit point to point • Data parallel: more regimented, global actions on data • Implemented with shared address space or message passing CSCE930-Advanced Computer Architecture, Introduction

More Related