1 / 12

PAPRIKA

PAPRIKA WP4: MODELLING THE INTERACTION BETWEEN SNOWPACK, RADIATION, AND THE ABSORBING MATERIAL DEPOSITED IN THE SNOW Hans-Werner Jacobi (jacobi@lgge.obs.ujf-grenoble.fr) Laboratoire de Glaciologie et Géophysique de l’Environnement LGGE CNRS / Université Joseph Fourier - Grenoble 1

bowen
Download Presentation

PAPRIKA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PAPRIKA WP4: MODELLING THE INTERACTION BETWEEN SNOWPACK, RADIATION, AND THE ABSORBING MATERIAL DEPOSITED IN THE SNOW Hans-Werner Jacobi (jacobi@lgge.obs.ujf-grenoble.fr) Laboratoire de Glaciologie et Géophysique de l’Environnement LGGE CNRS / Université Joseph Fourier - Grenoble 1 PAPRIKA MEETING Bergamo, 13-14 December 2010 Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France

  2. SNOWPACK MODEL CROCUS Turbulent Fluxes Conduction, diffusion, absorption SNOW COVER Calculated Snow Profiles Fresh snow Snow metamorphism Run-off ? ? ? ? ? ? ? ? Only input: Meteorological conditions Coordinates Exposition ATMOSPHERE Radiative Fluxes WIND GROUND: geothermic flux FALL WINTER SPRING

  3. SNOWPACK MODEL CROCUS Snow physics (for each layer) Temperature Thickness Density Liquid water content Snow surface temperature Meteorological parameters (time step 1 hour) Air temperature Incoming IR radiation ( cloud cover) Incoming short-wave radiation in 3 bands (0.3-0.8, 0.8-1.5, 1.5-2.8 µm) Relative humidity Precipitation (rain and snow) Wind speed Snow properties (for each layer) Snow type (dendricity and sphericity) Age Snow surface area Geographical parameters Latitude and longitude Altitude Inclination and exposition Shading by other mountains Budget (snowpack) Total height Run-off Latent and sensible heat flux Radiative flux (IR and short-wave) Albedo Input parameters Output parameters CROCUS --> CROCUS --> CROCUS -->

  4. Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France T T BC BC 1 Albedo Winter Spring Summer Effect of BC in snow on albedo and melting Incoming shortwave radiation Snow

  5. ALBEDO CALCULATION STANDARD (Surface layer only!) RADIATIVE TRANSFER 1. Grain size 2. SWE 3. SZA 4. Soil albedo 5. Wavelength 6. BC and dust 1. Snow age 2. Grain size 3. Wavelength Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France Snow type Radiation ++ Albedo calculation + +  Temperature Density Albedo modeling in a 1-D snowpack model SNOW PHYSICS: CROCUS ATMOSPHERE Incoming solar radiation Incoming IR radiation Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France Sensible / latent heat fluxes Rain Snow reflected Wind ++ SNOW COVER - Conduction - Melting / freezing - Percolation - Settling - Metamorphism  GROUND Krinner et al., Clim.Dyn. 2006 Ground heat flux Run-off Brun et al., J.Glaciol. 1989, 1992

  6. Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France Simulated albedo (300-800 nm) at Fairbanks 2003/04 with the standard CROCUS model or with radiation transfer

  7. Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France Simulated snowpack heights at Fairbanks 2003/04 with the standard model or with radiation transfer

  8. Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble, France Behavior of BC in the (melting) snowpack? Deposition: BC in fresh snow? Dry deposition velocities? Fate in the snow after deposition: Flushing-out with run-off? Accumulation at the surface during snow melt? Water solubility? Chemical reactivity?

  9. SNOWPACK MODEL CROCUS Snow physics (for each layer) Temperature Thickness Density Liquid water content Snow surface temperature Meteorological parameters (time step 1 hour) Air temperature Incoming IR radiation ( cloud cover) Incoming short-wave radiation in 3 bands (0.3-0.8, 0.8-1.5, 1.5-2.8 µm) Relative humidity Precipitation (rain and snow) Wind speed Snow properties (for each layer) Snow type (dendricity and sphericity) Age Snow surface area Geographical parameters Latitude and longitude Altitude Inclination and exposition Shading by other mountains Budget (snowpack) Total height Run-off Latent and sensible heat flux Radiative flux (IR and short-wave) Albedo BC parameters Wet and dry deposition Wash-out Input parameters Output parameters CROCUS --> CROCUS --> CROCUS -->

  10. Modélisation du changement d’albédo lié au dépôt d’aérosols en Eurasie (5 ans de spin-up, résultats pour Mars 2009) Avec « Flushing » Concentration de carbone-suie dans la neige (µg/kg) Concentration de poussière minérale (µg/kg) Sans « Flushing »

  11. Observations (Warren) • Sans flushing, c'est plus réaliste pour BC ! • Poussières minérales : peu d'observations • Aérosols organiques : solubles, il faudra certainement du flushing (mais observation des organiques complexe; NB : l'observation du sulfate dans la neige montre de fortes vitesses de transit vertical dans le manteau neigeux.

  12. Modélisation du changement d’albédo lié au dépôt d’aérosols en Eurasie (5 ans de spin-up, résultats pour Mars 2009) Albédo sans aérosols Albédo avec poussières minérales Albédo avec carbone-suie Albédo avec suie et poussières minérales

More Related