1 / 29

Ordinal Models

Ordinal Models. Ordinal Models. Estimating gender-specific LLCA with repeated ordinal data Examining the effect of time invariant covariates on class membership The effect of class membership on a later outcome. The data. 5 repeated measures of bedwetting 4½, 5½, 6½ ,7½ & 9½ yrs

brad
Download Presentation

Ordinal Models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ordinal Models

  2. Ordinal Models • Estimating gender-specific LLCA with repeated ordinal data • Examining the effect of time invariant covariates on class membership • The effect of class membership on a later outcome

  3. The data • 5 repeated measures of bedwetting • 4½, 5½, 6½ ,7½ & 9½ yrs • 3-level ordinal • Dry • Infrequent wetting (< 2 nights/week) • Frequent wetting (2+ nights/week)

  4. 4 time point ordinal LLCA (Boys) title: 4 time point LLCA of ordinal bedwetting; data: file is 'C:\Work\bedwet_dsm4_llca\spss\llca_dsm4.txt'; listwise is ON; variable: names ID sex nwet_kk2 nwet_kk3 nwet_kk4 nwet_kk5 nwet_km2 nwet_km3 nwet_km4 nwet_km5 nwet_kp2 nwet_kp3 nwet_kp4 nwet_kp5 nwet_kr2 nwet_kr3 nwet_kr4 nwet_kr5 nwet_ku2 nwet_ku3 nwet_ku4 nwet_ku5; categorical = nwet_kk3 nwet_km3 nwet_kp3 nwet_kr3 nwet_ku3; usevariables nwet_kk3 nwet_km3 nwet_kp3 nwet_kr3 nwet_ku3; missing are nwet_kk3 nwet_km3 nwet_kp3 nwet_kr3 nwet_ku3 (999); classes = c (4); useobservations (sex==1);

  5. RESULTS IN PROBABILITY SCALE Latent Class 1 NWET_KK3 Category 1 0.190 0.030 6.430 0.000 Category 2 0.672 0.033 20.134 0.000 Category 3 0.138 0.026 5.409 0.000 NWET_KM3 Category 1 0.224 0.038 5.929 0.000 Category 2 0.727 0.036 20.254 0.000 Category 3 0.048 0.019 2.533 0.011 NWET_KP3 Category 1 0.160 0.045 3.540 0.000 Category 2 0.823 0.044 18.613 0.000 Category 3 0.017 0.011 1.473 0.141 NWET_KR3 Category 1 0.075 0.064 1.178 0.239 Category 2 0.903 0.061 14.686 0.000 Category 3 0.022 0.011 1.929 0.054 NWET_KU3 Category 1 0.456 0.054 8.486 0.000 Category 2 0.532 0.052 10.269 0.000 Category 3 0.012 0.008 1.501 0.133

  6. RESULTS IN PROBABILITY SCALE Dry Latent Class 1 NWET_KK3 Category 1 0.190 0.030 6.430 0.000 Category 2 0.672 0.033 20.134 0.000 Category 3 0.138 0.026 5.409 0.000 NWET_KM3 Category 1 0.224 0.038 5.929 0.000 Category 2 0.727 0.036 20.254 0.000 Category 3 0.048 0.019 2.533 0.011 NWET_KP3 Category 1 0.160 0.045 3.540 0.000 Category 2 0.823 0.044 18.613 0.000 Category 3 0.017 0.011 1.473 0.141 NWET_KR3 Category 1 0.075 0.064 1.178 0.239 Category 2 0.903 0.061 14.686 0.000 Category 3 0.022 0.011 1.929 0.054 NWET_KU3 Category 1 0.456 0.054 8.486 0.000 Category 2 0.532 0.052 10.269 0.000 Category 3 0.012 0.008 1.501 0.133 Infrequent wetting Frequent wetting

  7. Alternative 1 – three dimensions • A 3D plot… or something made out of plasticine

  8. Alternative 2 – two figures Infrequent bedwetting Frequent bedwetting

  9. Alternative 3 – two figures Any bedwetting Frequent bedwetting

  10. Alternative 3 – two figures Any bedwetting Frequent bedwetting (1) A persistent wetting group who mostly wet to a frequent level (2) A persistent wetting group who mostly wet to an infrequent level (3) A delayed group comprising mainly infrequent wetters (4) Normative group

  11. Fit statistics - Boys

  12. 5-class model (boys) Any bedwetting Frequent bedwetting

  13. 5-class model (boys) • Normative (63.8%) • Mild risk of infrequent wetting at start which soon disappears • Delayed-infrequent (18.2%) • Delayed attainment of nighttime bladder control but rarely attains frequent levels • Persistent-infrequent (11.4%) • Persistent throughout period but rarely attains frequent levels • Persistent-frequent (4.0%) • Persistently and frequently until late into period. Appears to be turning into lower frequency wetting however over 80% are still wetting to some degree at 9.5yr • Delayed-frequent (2.7%) • Frequent wetting until half-way through time period, reducing to a lower level of wetting which appears to be clearing up by 9.5yr

  14. Fit statistics – Girls – Oh!

  15. Fit statistics – Girls – Oh!

  16. 6-class model (girls) Any bedwetting Frequent bedwetting

  17. 6-class model (girls) • Normative (78.6%) • Delayed-infrequent (11.7%) • Persistent-infrequent (4.6%) • Persistent-frequent (1.6%) • Delayed-frequent (1.3%) • Relapse (2.0%) • Initial period of dryness followed by a return to infrequent wetting

  18. Incorporating covariates • 2-stage method • Export class probabilities to another package – Stata • Model class membership as a multinomial model with probability weighting • Using classes derived from repeated BW measures with partially missing data (gloss over)

  19. Multinomial models (boys) label values class class_label label define class_label /// 1 "Pers INF [1]" /// 2 "DelayFRQ [2]" /// 3 "Normal [3]" /// 4 "Pers FRQ [4]" /// 5 "DelayINF [5]", add tab class foreach var of varlist bedwet_m bedwet_p […] toilet { tab `var' if class==1 xi: mlogit class `var' [iw = boy_weights], rrr test `var' }

  20. Typical output Multinomial logistic regression Number of obs = 5004 LR chi2(4) = 85.09 Prob > chi2 = 0.0000 Log likelihood = -5256.9295 Pseudo R2 = 0.0080 ------------------------------------------------------------------------------ class | RRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Pers INF [1] | bedwet_m | 2.456404 .3459902 6.38 0.000 1.863829 3.237378 -------------+---------------------------------------------------------------- DelayFRQ [2] | bedwet_m | 3.019243 .6958002 4.79 0.000 1.921915 4.743095 -------------+---------------------------------------------------------------- Pers FRQ [4] | bedwet_m | 3.795014 .6783016 7.46 0.000 2.673461 5.387073 -------------+---------------------------------------------------------------- DelayINF [5] | bedwet_m | 1.540813 .2046864 3.25 0.001 1.18761 1.999062 ------------------------------------------------------------------------------ (class==Normal [3] is the base outcome) ( 1) [Pers INF [1]]bedwet_m = 0 ( 2) [DelayDSM [2]]bedwet_m = 0 ( 3) [Pers DSM [4]]bedwet_m = 0 ( 4) [DelayINF [5]]bedwet_m = 0 chi2( 4) = 91.87, Prob > chi2 = 0.0000

  21. Selection of covariates (boys)

  22. What if we had used modal-class? • The further the posterior probabilities for class assignment are from 1 (i.e. the lower the entropy) the poorer the estimates from a model using the modal class • In this example (partial missing data) • entropy = 0.788 1 2 3 4 5 1 0.800 0.011 0.017 0.020 0.153 2 0.063 0.804 0.000 0.069 0.064 3 0.008 0.001 0.923 0.000 0.068 4 0.049 0.104 0.004 0.813 0.030 5 0.110 0.009 0.170 0.006 0.706

  23. Estimates using mod class Bias depends on class and also covariate

  24. A later outcome • Boys’ data • Outcomes: • Key Stage 3 at 13-14 yrs • Achieved level 5 or greater in English/Sci/Maths • English failed = 1210 (27.9%) • Science failed = 895 (20.6%) • Maths failed = 845 (19.5%)

  25. 2 stage procedure - Stata label values class class_label label define class_label /// 1 "Pers INF [1]" /// 2 "DelayFRQ [2]" /// 3 "Normal [3]" /// 4 "Pers FRQ [4]" /// 5 "DelayINF [5]", add recode class 3=0 foreach var of varlist maths science english { tab `var' if class==1 xi: logit `var' i.class [iw = b_par_p], or test _Iclass_2 _Iclass_3 _Iclass_4 _Iclass_5 }

  26. KS3 - English Logistic regression Number of obs = 4341 LR chi2(4) = 7.73 Prob > chi2 = 0.1018 Log likelihood = -2564.536 Pseudo R2 = 0.0015 ------------------------------------------------------------------------------ k3_lev5e | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Pers INF | .9896705 .1131557 -0.09 0.928 .7909827 1.238267 Delay FRQ | .8946308 .1964416 -0.51 0.612 .5817527 1.375781 Pers FRQ | 1.474409 .2323757 2.46 0.014 1.082589 2.008041 Delay INF | .9135896 .0852754 -0.97 0.333 .76085 1.096991 ------------------------------------------------------------------------------ ( 1) _Iclass_1 = 0 ( 2) _Iclass_2 = 0 ( 3) _Iclass_4 = 0 ( 4) _Iclass_5 = 0 chi2( 4) = 7.97 Prob > chi2 = 0.0926

  27. KS3 - Maths Logistic regression Number of obs = 4341 LR chi2(4) = 11.29 Prob > chi2 = 0.0235 Log likelihood = -2133.6412 Pseudo R2 = 0.0026 ------------------------------------------------------------------------------ k3_lev5m | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Pers INF | .9460608 .1241854 -0.42 0.673 .7314512 1.223637 Delay FRQ | .9601245 .2358923 -0.17 0.868 .5931937 1.554027 Pers FRQ | 1.688991 .2836716 3.12 0.002 1.215249 2.347413 Delay INF | .8976914 .095965 -1.01 0.313 .7280008 1.106935 ------------------------------------------------------------------------------ ( 1) _Iclass_1 = 0 ( 2) _Iclass_2 = 0 ( 3) _Iclass_4 = 0 ( 4) _Iclass_5 = 0 chi2( 4) = 12.05 Prob > chi2 = 0.0170

  28. KS3 - Science Logistic regression Number of obs = 4341 LR chi2(4) = 8.94 Prob > chi2 = 0.0626 Log likelihood = -2203.9946 Pseudo R2 = 0.0020 ------------------------------------------------------------------------------ k3_lev5s | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Pers INF | .8913295 .1159146 -0.88 0.376 .6907838 1.150097 Delay FRQ | 1.067237 .2482602 0.28 0.780 .6764799 1.683709 Pers FRQ | 1.525329 .2566845 2.51 0.012 1.096786 2.121314 Delay INF | .8888344 .092835 -1.13 0.259 .7242967 1.09075 ------------------------------------------------------------------------------ ( 1) _Iclass_1 = 0 ( 2) _Iclass_2 = 0 ( 3) _Iclass_4 = 0 ( 4) _Iclass_5 = 0 chi2( 4) = 9.34 Prob > chi2 = 0.0531

  29. Summary • Fitting ordinal models is similar to binary data however results (“trajectories”) are harder to interpret graphically • Resulting classes can be used either as outcomes or categorical predictors using weighted regression in Stata • Using variables derived from modal class assignment can often introduce very biased estimates

More Related