460 likes | 494 Views
Number Representation. How to Represent Negative Numbers?. So far, unsigned numbers Obvious solution: define leftmost bit to be sign! 0 => +, 1 => - Rest of bits can be numerical value of number Representation called sign and magnitude. Shortcomings of sign and magnitude?.
E N D
How to Represent Negative Numbers? • So far, unsigned numbers • Obvious solution: define leftmost bit to be sign! • 0 => +, 1 => - • Rest of bits can be numerical value of number • Representation called sign and magnitude
Shortcomings of sign and magnitude? • Arithmetic circuit more complicated • Special steps depending whether signs are the same or not • Also, Two zeros • 0x00000000 = +0ten • 0x80000000 = -0ten • What would it mean for programming? • Sign and magnitude abandoned
00000 00001 ... 01111 11111 10000 ... 11110 Another try: complement the bits • Example: 710 = 001112 -710 = 110002 • Called one’s Complement • Note: postive numbers have leading 0s, negative numbers have leadings 1s. • What is -00000 ? • How many positive numbers in N bits? • How many negative ones?
Shortcomings of ones complement? • Arithmetic not too hard • Still two zeros • 0x00000000 = +0ten • 0xFFFFFFFF = -0ten • What would it mean for programming? • One’s complement eventually abandoned because another solution was better
Search for Negative Number Representation • Obvious solution didn’t work, find another • What is result for unsigned numbers if tried to subtract large number from a small one? • Would try to borrow from string of leading 0s, so result would have a string of leading 1s • With no obvious better alternative, pick representation that made the hardware simple: leading 0s positive, leading 1s negative • 000000...xxx is >=0, 111111...xxx is < 0 • This representation called two’s complement
Two’s Complement Number line 00000 11111 • 2 N-1 non-negatives • 2 N-1 negatives • one zero • how many positives? • comparison? • overflow? 00001 11110 00010 0 -1 1 2 -2 . . . . . . 15 -15 -16 01111 10001 10000
Two’s Complement Numbers 0000 ... 0000 0000 0000 0000two = 0ten0000 ... 0000 0000 0000 0001two = 1ten0000 ... 0000 0000 0000 0010two = 2ten. . .0111 ... 1111 1111 1111 1101two = 2,147,483,645ten0111 ... 1111 1111 1111 1110two = 2,147,483,646ten0111 ... 1111 1111 1111 1111two = 2,147,483,647ten1000 ... 0000 0000 0000 0000two = –2,147,483,648ten1000 ... 0000 0000 0000 0001two = –2,147,483,647ten1000 ... 0000 0000 0000 0010two = –2,147,483,646ten. . . 1111 ... 1111 1111 1111 1101two = –3ten1111 ... 1111 1111 1111 1110two = –2ten1111 ... 1111 1111 1111 1111two = –1ten • One zero, 1st bit => >=0 or <0, called sign bit • but one negative with no positive –2,147,483,648ten
Two’s Complement Formula • Can represent positive and negative numbers in terms of the bit value times a power of 2: • d31 x -231+ d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20 • Example1111 1111 1111 1111 1111 1111 1111 1100two = 1x-231+1x230 +1x229+...+1x22+0x21+0x20 = -231+ 230 + 229 + ...+ 22 + 0 + 0 = -2,147,483,648ten + 2,147,483,644ten = -4ten • Note: need to specify width: we use 32 bits
Two’s complement shortcut: Negation • Invert every 0 to 1 and every 1 to 0, then add 1 to the result • Sum of number and its one’s complement must be 111...111two • 111...111two= -1ten • Let x’ mean the inverted representation of x • Then x + x’ = -1 x + x’ + 1 = 0 x’ + 1 = -x • Example: -4 to +4 to -4x : 1111 1111 1111 1111 1111 1111 1111 1100twox’: 0000 0000 0000 0000 0000 0000 0000 0011two+1: 0000 0000 0000 0000 0000 0000 0000 0100two()’: 1111 1111 1111 1111 1111 1111 1111 1011two+1: 1111 1111 1111 1111 1111 1111 1111 1100two
Two’s comp. shortcut: Sign extension • Convert 2’s complement number using n bits to more than n bits • Simply replicate the most significant bit (sign bit) of smaller to fill new bits • 2’s comp. positive number has infinite 0s • 2’s comp. negative number has infinite 1s • Bit representation hides leading bits; sign extension restores some of them • 16-bit -4ten to 32-bit: 1111 1111 1111 1100two 1111 1111 1111 1111 1111 1111 1111 1100two
Carries a: 0 0 1 1 b: 0 1 0 1 Sum: 1 0 0 0 One-Bit Full Adder (1/3) • Example Binary Addition: • Thus for any bit of addition: • The inputs are ai, bi, CarryIni • The outputs are Sumi, CarryOuti • Note: CarryIni+1 = CarryOuti
Definition Sum = ABCin + ABCin + ABCin + ABCin CarryOut = AB + ACin + BCin ¯ ¯ ¯ ¯ ¯ ¯ One-Bit Full Adder (2/3)
CarryIn A + Sum B CarryOut One-Bit Full Adder (3/3) • To create one-bit full adder: • implement gates for Sum • implement gates for CarryOut • connect all inputs with same name
Ripple-Carry Adders: adding n-bits numbers CarryIn0 • Critical Path of n-bit Rippled-carry adder is n*CP • CP = 2 gate-delays (Cout = AB + ACin + BCin) A0 1-bit FA Sum0 B0 CarryOut0 CarryIn1 A1 1-bit FA Sum1 B1 CarryOut1 CarryIn2 A2 1-bit FA Sum2 B2 CarryOut2 CarryIn3 A3 1-bit FA Sum3 B3 CarryOut3
Cin A B C-out 0 0 0 “kill” 0 1 C-in “propagate” 1 0 C-in “propagate” 1 1 1 “generate” A0 S0 G B0 P C1 =G0 + C0· P0 = A0B0 + C0(A0+B0) A S P = A + B G = A B G B P C2 = G1 + G0 · P1 + C0· P0 · P1 A S G B P C3 = G2 + G1 · P2 + G0 · P1 · P2 + C0· P0 · P1 · P2 A S G = G3 + P3·G2 + P3·P2·G1 + P3·P2·P1·G0 G B P P = P3·P2·P1·P0 C4 = . . . Carry Look Ahead: reducing Carry Propagation delay
¯ ¯ ¯ ¯ ¯ ¯ Sum = ABCin + ABCin + ABCin + ABCin Carry Look Ahead: Delays • Expression for any carry: • Ci+1 = Gi + PiGi-1 + … + PiPi-1 … P0C0 • All carries can be obtained in 3 gate-delays: • 1 needed to developed all Pi and Gi • 2 needed in the AND-OR circuit • All sums can be obtained in 6 gate-delays: • 3 needed to obtain carries • 1 needed to invert carry • 2 needed in the AND-OR circuit of Sum’s circuit • Independent of the number of bits (n) • 4-bit Adder: • CLA: 6 gate-delays • RC: (3*2 + 3) gate-delays • 16-bit Adder: • CLA: 6 gate-delays • RC: (15*2 + 3) gate-delays
C L A 4-bit Adder 4-bit Adder 4-bit Adder Cascaded CLA: overcoming Fan-in constraint C0 G0 P0 C1 =G0 + C0 · P0 Delay = 3 + 2 + 3 = 8 DelayRC = 15*2 + 3 = 33 C2 = G1 + G0 · P1 + C0 · P0 · P1 C3 = G2 + G1 · P2 + G0 · P1 · P2 + C0 · P0 · P1 · P2 G P C4 = . . .
Addition & Subtraction Operations • Addition: • Just add the two numbers • Ignore the Carry-out from MSB • Result will be correct, provided there’s no overflow • Subtraction: • Form 2’s complement of the subtrahend • Add the two numbers as in Addition 0 1 0 1 (+5)+0 0 1 0 (+2) 0 1 1 1 (+7) 0 1 0 1 (+5)+1 0 1 0 (-6) 1 1 1 1 (-1) 0 0 1 0 (+2) 0 0 1 00 1 0 0 (+4) +1 1 0 0 (-4) 1 1 1 0 (-2) 1 0 1 1 (-5)+1 1 1 0 (-2)11 0 0 1 (-7) 0 1 1 1 (+7)+1 1 0 1 (-3)10 1 0 0 (+4) 1 1 1 0 (-2) 1 1 1 01 0 1 1 (-5) +0 1 0 1 (+5)10 0 1 1 (+3)
Overflow Decimal Binary Decimal 2’s Complement 0 0000 0 0000 • Examples: 7 + 3 = 10 but ... • - 4 5 = - 9 but ... 1 0001 -1 1111 2 0010 -2 1110 3 0011 -3 1101 4 0100 -4 1100 5 0101 -5 1011 6 0110 -6 1010 7 0111 -7 1001 -8 1000 0 1 1 1 1 0 1 1 1 7 1 1 0 0 – 4 3 – 5 + 0 0 1 1 + 1 0 1 1 1 0 1 0 – 6 0 1 1 1 7
Overflow Detection • Overflow: the result is too large (or too small) to represent properly • Example: - 8 < = 4-bit binary number <= 7 • When adding operands with different signs, overflow cannot occur! • Overflow occurs when adding: • 2 positive numbers and the sum is negative • 2 negative numbers and the sum is positive • On your own: Prove you can detect overflow by: • Carry into MSB ° Carry out of MSB 0 1 1 1 1 0 0 1 1 1 7 1 1 0 0 –4 3 – 5 + 0 0 1 1 + 1 0 1 1 1 0 1 0 – 6 0 1 1 1 7
CarryIn1 A1 1-bit FA Result1 B1 CarryOut1 Overflow Detection Logic • Carry into MSB ° Carry out of MSB • For a N-bit Adder: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1] CarryIn0 A0 1-bit FA Result0 X Y X XOR Y B0 0 0 0 CarryOut0 0 1 1 1 0 1 1 1 0 CarryIn2 A2 1-bit FA Result2 B2 CarryIn3 Overflow A3 1-bit FA Result3 B3 CarryOut3
Condition Codes • CC Flags will be set/cleared by arithmetic operations: • N (negative): 1 if result is negative (MSB = 1), otherwise 0 • C (carry): 1 if carry-out(borrow) is generated, otherwise 0 • V (overflow): 1 if overflow occurs, otherwise 0 • Z (zero): 1 if result is zero, otherwise 0 0 1 0 1 (+5)+0 1 0 0 (+4) 1 0 0 1 (-7?) 0 1 0 1 (+5)+1 0 1 0 (-6)1 1 1 1 (-1) 0 0 1 1 (+3)+1 1 0 1 (-3)10 0 0 0 (0) 0 1 1 1 (+7)+1 1 0 1 (-3)10 1 0 0 (+4)
Unsigned Multiplication • Paper and pencil example (unsigned): Multiplicand 1101 (13)Multiplier1011 (11) 11011101 00001101Product 10001111 (143) • m bits x n bits = m+n bit product • Binary makes it easy: • 0 => place 0 ( 0 x multiplicand) • 1 => place a copy ( 1 x multiplicand)
0 0 0 0 A3 A2 A1 A0 B0 A3 A2 A1 A0 B1 A3 A2 A1 A0 B2 A3 A2 A1 A0 B3 P7 P6 P5 P4 P3 P2 P1 P0 Unsigned Combinational Multiplier • Stage i accumulates A * 2 i if Bi == 1
A3 A2 A1 A0 A3 A2 A1 A0 A3 A2 A1 A0 A3 A2 A1 A0 How does it work? 0 0 0 0 0 0 0 B0 • at each stage shift A left ( x 2) • use next bit of B to determine whether to add in shifted multiplicand • accumulate 2n bit partial product at each stage B1 B2 B3 P7 P6 P5 P4 P3 P2 P1 P0
Multiplier Circuit 4 bits Multiplicand 0 Multiplicand 1101 C ProductMultiplier0 0000 10110 1101 1011 Add0 0110 1101 Shift 1 0011 1101 Add0 1001 1110 Shift 0 1001 1110 NoAdd0 0100 1111 Shift 1 0001 1111 Add0 1000 1111 Shift MUX Shift Right Control 4-bit FA Add/NoAdd C Product (Multiplier) 8 bits 4 bits
Signed Multiplication • Negative Multiplicand: Multiplicand 10011 (-13)Multiplier 01011 (+11)1111110011111110011000000001110011000000Product 1101110001 (-143) • Negative Multiplier: • Form 2’s complement of both multiplier and multiplicand • Proceed as above
Motivation for Booth’s Algorithm • Works well for both Negative & Positive Multipliers • Example 2 x 6 = 0010 x 0110: 0010 x 0110 + 0000 shift (0 in multiplier) + 0010 add (1 in multiplier) + 0100 add (1 in multiplier) + 0000 shift (0 in multiplier) 00001100 • FA with add or subtract gets same result in more than one way: 6 = – 2 + 8 0110 = – 00010 + 01000 = 11110 + 01000 • For example • 0010 x 0110 00000000shift (0 in multiplier) 1111110 sub(first 1 in multpl.)000000shift (mid string of 1s) + 00010 add (prior step had last 1) 00001100
Booth’s Algorithm Current Bit Bit to the Right Explanation Example Op 1 0 Begins run of 1s 0001111000 sub 1 1 Middle of run of 1s 0001111000 none 0 1 End of run of 1s 0001111000 add 0 0 Middle of run of 0s 0001111000 none Originally for Speed (when shift was faster than add) • Small number of additions needed when multiplier has a few large blocks of 1s
Booths Example (2 x 7) Operation Multiplicand Product next? 0. initial value 0010 0000 0111 0 10 -> sub 1a. P = P - m 1110 + 1110 1110 0111 0 shift P (sign ext) 1b. 0010 1111 00111 11 -> nop, shift 2. 0010 1111 10011 11 -> nop, shift 3. 0010 1111 11001 01 -> add 4a. 0010 + 0010 0001 11001 shift 4b. 0010 0000 1110 0 done
Booths Example (2 x -3) Operation Multiplicand Product next? 0. initial value 0010 0000 1101 0 10 -> sub 1a. P = P - m 1110 + 1110 1110 1101 0 shift P (sign ext) 1b. 0010 1111 01101 01 -> add + 0010 2a. 0001 01101shift P 2b. 0010 0000 10110 10 -> sub + 1110 3a. 0010 1110 10110 shift 3b. 0010 1111 0101 1 11 -> nop 4a 1111 0101 1 shift 4b. 0010 1111 10101 done
Fast Multiplication (read yourself!)
Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend–1000 10 101 1010–1000 10 Remainder (or Modulo result) • See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or 0 * divisor • Dividend = Quotient x Divisor + Remainder=> | Dividend | = | Quotient | + | Divisor |
Divisor Division Circuit 33 bits Shift Left Control 33-bit FA Q Setting Remainder (Quotient) 65 bits 33 bits Sign-bit Checking
0010QuotientDivisor11 1000 Dividend 1110Remainder Restoring Division Algorithm RemainderQuotient Initially 00000 1000Shift 00001 000_Sub(-11) 11101Set q0 11110Restore 00001 0000 Shift 00010 000_Sub(-11) 11101Set q0 11111Restore 00010 0000 Shift 00100 000_Sub(-11) 11101Set q0 00001 00001 0001 Shift 00010 001_Sub(-11) 11101 001_Set q0 11111Restore 00010 0010