1 / 26

Un processo all’interfaccia

Un processo all’interfaccia. Per: O + ne - = R 5 eventi separati devono verificarsi: O devono essere trasportati con successo dal bulk della soluzione (transporto di massa) O deve adsorbirsi in modo transiente sulla superficie dell’elettrodo (non-faradico)

Download Presentation

Un processo all’interfaccia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Un processo all’interfaccia • Per: O + ne- = R • 5 eventi separati devono verificarsi: • O devono essere trasportati con successo dal bulk della soluzione (transporto di massa) • O deve adsorbirsi in modo transiente sulla superficie dell’elettrodo (non-faradico) • dveve avvenire un trasferimento di carica tra elettrodo ed O (faradico) • R deve desorbirsi dalla superfiie elettrodica (non-faradico) • R deve essere trasportato lontano dall’elettrodo nel bulk della soluzione (transporto di massa)

  2. Classificazione degli Elettrodi • si basa sulla natura e sul numero delle fasi tra cui avviene il trasferimento elettronico • 3 Classi: • Elettrodi di I specie • Elettrodi di II specie • Elettrodi di III specie

  3. Elettrodi di I specie • Metallo in contatto con suoi cationi o non-metallo in contatto con suoi anioni • ESEMPI: • Cu2+ /Cu(s) • Zn2+/Zn(s) • SHE • Ag+/Ag (Elettrodo di riferimento non acquoso) • Cl-/Cl2(g)/Pt Electtrodi nella pila Daniell

  4. Elettrodidi I specie • Risposta dell’elettrodo data dalla equazione di Nernst (Nernstiano): • N.B.: elettrodi di Fe, Al, e W NON sono elettrodi di I specie • spessa ricopertura superficiale da parte degli ossidi

  5. Electrode of the Second Kind • Metal in contact with sparingly soluble salt of the metal • Common name: anion electrodes • EXAMPLES: • Ag/AgCl(s) • Hg/Hg2Cl2(s)/Cl- (saturated calomel electrode; SCE)

  6. Ag/AgCl, KCl Il sale insolubile è AgCl sottoposto all’equilibrio di solubilità: La reazione redox corrispondente è: Essendo insolubile è presente come corpo di fondo o deposito sul metallo aAg+=1

  7. Il potenziale redox è relativo alla coppia Ag/Ag+:

  8. Electrode of the Second Kind • Electrode response given by: • NOTES: • anion activity determines potential • make great reference electrodes because of low solubility of salt (potential very stable)

  9. The Calomel Reference Electrode Note: concentrations typically high  concentrations small  electrode doesn’t become polarized  potential constant

  10. Electrode of the Third Kind • Electrodes that merely serve as sources or sinks for electrons • Common names: redox, inert, unattackable • EXAMPLES: • metals: Pt, Au, GC, graphite, HOPG, Hg • semiconductors: Si, GaAs, In-SnO2/glass • Response: • for Pt in contact with Fe2+, Fe3+ in solution: • E = E0- 0.059 (V) log ([Fe2+]/[Fe3+])

  11. Electrode of the Fourth Kind • Electrodes that cannot be classified as 1-3 • EXAMPLES: • Chemically modified electrodes (CME’s)

  12. Reference Electrodes • Purpose: provide stable potential against which other potentials can be reliably measured • Criteria: • stable (time, temperature) • reproducible (you, me) • potential shouldn’t be altered by passage of small current = not polarizable • easily constructed • convenient for use

  13. Advantages International standard E0 0 V One of most reproducible potentials + 1 mV Disadvantages Convenience Pt black easily poisoned by organics, sulfide, cyanide, etc. Hydrogen explosive Sulfuric and hydrochloric strong acids SHE

  14. Aqueous SCE Ag/AgCl Nonaqueous Ag+/Ag pseudoreferences Pt, Ag wires Ferrocene Practical Reference Electrodes

  15. Cl-(aq)/Hg2Cl2/Hg(l) Hg22+ + 2e- = 2Hg(l) E0 = 0.24 V vs. SHE @ 250C Disadvantages Hg toxic solubility of KCl temperature dependent dE/dT = -0.67 mV/K (must quote temperature) SCE • Advantages • Most polarographic data ref’d to SCE From BAS www-site: http://www.bioanalytical.com/

  16. Ag wire coated with AgCl(s), immersed in NaCl or KCl solution Ag+ + e- = Ag(s) E0 = 0.22 V vs. SHE @ 250C Disadvantages solubility of KCl/NaCl temperature dependent dE/dT = -0.73 mV/K (must quote temperature) Ag/AgCl • Advantages • chemical processing industry has standardized on this electrode • convenient • rugged/durable From BAS www-site: http://www.bioanalytical.com/

  17. Ag+ + e-= Ag(s) requires use of internal potential standard Disadvantages Potential depends on solvent electrolyte (LiCl, TBAClO4, TBAPF6, TBABF4 Care must be taken to minimize junction potentials Ag+/Ag • Advantages • Most widely used • Easily prepared • Works well in all aprotic solvents: • THF, CAN, DMSO, DMF From BAS www-site: http://www.bioanalytical.com/

  18. Pseudo-References • Pt or Ag wire (inert) • Idea:in medium of high resistance, low conductivity, wire will assume reasonably steady, highly reproducible potential (+20 mV) • Advantage: no solution contamination • Limitation: must use internal potential standard (ferrocene)

  19. Can Aqueous References Be Used in Nonaqueous Media? • Yes with caution! • May be significant junction potentials • Requires use of internal standard • May be greater noise • Electrolyte may precipitate/clog electrode frit • Don’t forget about your chemistry • Chemistry may be water sensitive

  20. Electrodes • Metal • solid • Pt, Au, Ag, C • liquid • dropping mercury electrode (DME) • Semiconductors • Si, GaAs • In-SnO2/glass (optically transparent)

  21. Carbon • Paste • With nujol (mineral oil) • Glassy carbon (GC) • Amorphous • Pyrolytic graphite - more ordered than GC • Basal Plane • Edge Plane (more conductive)

  22. Electrode Materials • Different Potential Windows • Can affect electron transfer kinetics

  23. Electrodes • Size • Analytical macro • 1.6 - 3 mm diameter • Micro • 10-100 m diameter From BAS www-site: http://www.bioanalytical.com/

  24. Electrode Geometry Geometry is critical and affects how the data are analyzed and interpreted • Disk • area: r2 • wire (cylinder) • area: l(2 r) r2 • Mesh • optically transparent • Sheet Note: Geometric area < effective surface area

  25. Cleanliness IS Next to Godliness in Electrochemistry • Working electrode must be carefully cleaned before each experiment • Mechanical • Abrasion with alumina or “diamond” polish • Chemical • Sonicate in Alconox • Soak in HNO3 • Electrochemical • Cycle in 0.5 M H2SO4 (Pt)

  26. Electrochemical Cleaning Taken from Table 4-7 in Sawyer, D.T.; Roberts, Jr., J.L. Experimental Electrochemistry for Chemists Wiley: New York, 1976.

More Related