1 / 52

Dynamic Compilation and Modification

Dynamic Compilation and Modification. CS 671 April 15, 2008. Compiler. High-Level Programming Languages. Machine Code. Error Messages. High-Level Programming Languages. Front End. Back End. Machine Code. So Far… Static Compilation. Digging Deeper…. Compiler. Error Messages.

Download Presentation

Dynamic Compilation and Modification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamic Compilation and Modification CS 671 April 15, 2008

  2. Compiler High-Level Programming Languages Machine Code Error Messages High-Level Programming Languages Front End Back End Machine Code So Far… Static Compilation Digging Deeper… Compiler Error Messages

  3. Alternatives to the Traditional Model • Static Compilation • All work is done “ahead-of-time” • Just-in-Time Compilation • Postpone some compilation tasks • Multiversioning and Dynamic Feedback • Include multiple options in binary • Dynamic Binary Optimization • Traditional compilation model • Executables can adapt

  4. Move More of Compilation to Run Time • Execution environment may be quite different from the assumptions made at compile time • Dynamically loaded libraries • User inputs • Hardware configurations • Dependence on software vendors • Apps on tap • Incorporate profiling

  5. Just-in-Time Compilation • Ship bytecodes (think IR) rather than binaries • Binaries execute on machines • Bytecodes execute on virtual machines Compiler High-Level Programming Languages Machine Code Front End Back End Error Messages

  6. javac source bytecode java bytecode execute Just-in-Time Compilation • javacthe Java bytecode compiler • javathe Java virtual machine • Bytecode: machine independent, portable • Step One: “Compile” Circle.java • % javac Circle.java -> Circle.class • Step Two: “Execute” • % java Circle.class

  7. Bytecodes • Each frame contains local variables and an operand stack • Instruction set • Load/store between locals and operand stack • Arithmetic on operand stack • Object creation and method invocation • Array/field accesses • Control transfers and exceptions • The type of the operand stack at each program point is known at compile time

  8. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b)

  9. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b) 42 a 7 b c 0

  10. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b) 42 a 7 b c 0 2

  11. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b) 42 a 7 b c 0 42 2

  12. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b) 42 a 7 b 7 c 0 42 2

  13. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b) 42 a 7 b c 0 49 2

  14. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b) 42 a 7 b c 0 98

  15. Bytecodes (cont.) • Example: • iconst 2 • iload a • iload b • iadd • imul • istore c • Computes: c := 2 * (a + b) 42 a 7 b c 98

  16. Executing Bytecode • java Circle.class - What happens? • Interpreting • map each bytecode to a machine code sequence, • for each bytecode, execute the sequence • Translation to machine code • map all the bytecodes to machine code (or a higher level intermediate representation) • massage them (e.g., remove redundancies) • execute the machine code

  17. Hotspot Compilation • A hybrid approach • Initially interpret • Find the “hot” (frequently executed) methods • Translate only hot methods to machine code

  18. MyApp JVM VM VM VM VM VM VM P III P IV 21164 21264 PA-8000 PA-7000 The Virtual Machine • An extreme version of an old idea • Previously: • Now: MyApp MyApp MyApp x86 alpha pa-risc P III P IV 21164 21264 PA-8000 PA-7000

  19. Compile-Time Multiversioning • Multiple versions of code sections are generated at compile-time • Most appropriate variant is selected at runtime based upon characteristics of the input data and/or machine environment • Multiple variants can cause code explosion • Thus typically only a few versions are created

  20. modified binary ???? binary Another Alternative • Modify a traditional application as it executes • Why? • Don’t have source code!

  21. A Dynamic Optimization System? • Transforms* an application at run time • * {translate, optimize, extend} Application Transform Profile Code Cache Execute

  22. Classification • Dynamic binary optimizers(x86  x86opt) • Complement the static compiler • User inputs, phases, DLLs, hardware features • Examples: DynamoRIO, Mojo, Strata • Dynamic translators(x86  PPC) • Convert applications to run on a new architecture • Examples: Rosetta, Transmeta CMS, DAISY • Binary instrumentation(x86  x86instr) • Inspect and/or add features to existing applications • Examples: Pin, Valgrind • JITs + adaptive systems(Java bytecode  x86)

  23. Dynamic Instrumentation Demo • Pin • Four architectures – IA32, EM64T, IPF, XScale • Four OSes – Linux, FreeBSD, MacOS, Windows

  24. What is Instrumentation? • A technique that inserts extra code into a program to collect runtime information • Instrumentation approaches: • Source instrumentation: • Instrument source programs • Binary instrumentation: • Instrument executables directly

  25. Why use Dynamic Instrumentation? • No need to recompile or relink • Discover code at runtime • Handle dynamically-generated code • Attach to running processes

  26. How is Instrumentation used in PL/Compiler Research? Program analysis • Code coverage • Call-graph generation • Memory-leak detection • Instruction profiling Thread analysis • Thread profiling • Race detection

  27. How is Instrumentation used in Computer Architecture Research? • Trace Generation • Branch Predictor and Cache Modeling • Fault Tolerance Studies • Emulating Speculation • Emulating New Instructions

  28. Pin Features • DynamicInstrumentation: • Do not need source code, recompilation, post-linking • Programmable Instrumentation: • Provides rich APIs to write in C/C++ your own instrumentation tools (called Pintools) • Multiplatform: • Supports x86, x86-64, Itanium, Xscale • Supports Linux, Windows, MacOS • Robust: • Instruments real-life applications: Database, web browsers, … • Instruments multithreaded applications • Supports signals • Efficient: • Applies compiler optimizations on instrumentation code

  29. Using Pin • Launch and instrument an application $ pin –t pintool –- application Instrumentation engine (provided in the kit) Instrumentation tool (write your own, or use one provided in the kit) • Attach to and instrument an application $ pin –t pintool –pid 1234

  30. Pin Instrumentation APIs • Basic APIs are architecture independent: • Provide common functionalities like determining: • Control-flow changes • Memory accesses • Architecture-specific APIs • e.g., Info about segmentation registers on IA32 • Call-based APIs: • Instrumentation routines • Analysis routines

  31. Instrumentation vs. Analysis • Instrumentation routinesdefine where instrumentation is inserted • e.g., before instruction C Occurs first time an instruction is executed • Analysis routinesdefine what to do when instrumentation is activated • e.g., increment counter C Occurs every time an instruction is executed

  32. counter++; counter++; counter++; counter++; counter++; Pintool 1: Instruction Count • sub $0xff, %edx • cmp %esi, %edx • jle <L1> • mov $0x1, %edi • add $0x10, %eax

  33. Pintool 1: Instruction Count Output $ /bin/lsMakefile imageload.out itrace proccount imageload inscount0 atrace itrace.out $ pin -t inscount0.so -- /bin/ls Makefile imageload.out itrace proccount imageload inscount0 atrace itrace.out • Count 422838

  34. ManualExamples/inscount0.cpp #include <iostream> #include "pin.h" UINT64 icount = 0; void docount() { icount++; } void Instruction(INS ins, void *v) { INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END); } void Fini(INT32 code, void *v) { std::cerr << "Count " << icount << endl; } int main(int argc, char * argv[]) { PIN_Init(argc, argv); INS_AddInstrumentFunction(Instruction, 0); PIN_AddFiniFunction(Fini, 0); PIN_StartProgram(); return 0; } analysis routine instrumentation routine

  35. Print(ip); Print(ip); Print(ip); Print(ip); Print(ip); Pintool 2: Instruction Trace • sub $0xff, %edx • cmp %esi, %edx • jle <L1> • mov $0x1, %edi • add $0x10, %eax Need to pass ip argument to the analysis routine (printip())

  36. Pintool 2: Instruction Trace Output $ pin -t itrace.so -- /bin/lsMakefile imageload.out itrace proccount imageload inscount0 atrace itrace.out • $ head -4 itrace.out 0x40001e90 0x40001e91 0x40001ee4 0x40001ee5

  37. ManualExamples/itrace.cpp argument to analysis routine • #include <stdio.h> • #include "pin.H" • FILE * trace; • void printip(void *ip) { fprintf(trace, "%p\n", ip); } • void Instruction(INS ins, void *v) { • INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip, IARG_INST_PTR, IARG_END); • } • void Fini(INT32 code, void *v) { fclose(trace); } • int main(int argc, char * argv[]) { • trace = fopen("itrace.out", "w"); • PIN_Init(argc, argv); • INS_AddInstrumentFunction(Instruction, 0); • PIN_AddFiniFunction(Fini, 0); • PIN_StartProgram(); • return 0; • } analysis routine instrumentation routine

  38. Examples of Arguments to Analysis Routine • IARG_INST_PTR • Instruction pointer (program counter) value • IARG_UINT32 <value> • An integer value • IARG_REG_VALUE <register name> • Value of the register specified • IARG_BRANCH_TARGET_ADDR • Target address of the branch instrumented • IARG_MEMORY_READ_EA • Effective address of a memory read And many more … (refer to the Pin manual for details)

  39. cmp %esi, %edx jle <L1> mov $0x1, %edi count() count() count() <L1>: mov $0x8,%edi Instrumentation Points • Instrument points relative to an instruction: • Before (IPOINT_BEFORE) • After: • Fall-through edge (IPOINT_AFTER) • Taken edge (IPOINT_TAKEN_BRANCH)

  40. Instrumentation Granularity • Instruction • Basic block • A sequence of instructions terminated at a control-flow changing instruction • Single entry, single exit • Trace • A sequence of basic blocks terminated at an unconditional control-flow changing instruction • Single entry, multiple exits Instrumentation can be done at three different granularities: sub $0xff, %edx cmp %esi, %edx jle <L1> mov $0x1, %edi add $0x10, %eax jmp <L2> 1 Trace, 2 BBs, 6 insts

  41. Pintool 3: Faster Instruction Count counter += 3 sub $0xff, %edx cmp %esi, %edx jle <L1> mov $0x1, %edi add $0x10, %eax basic blocks (bbl) counter += 2

  42. Modifying Program Behavior • Pin allows you not only to observe but also change program behavior • Ways to change program behavior: • Add/delete instructions • Change register values • Change memory values • Change control flow

  43. Pin Internals

  44. Application Operating System Hardware Pin’s Software Architecture Address space Pintool Pin Instrumentation APIs Virtual Machine (VM) Code Cache JIT Compiler Emulation Unit

  45. 1’ 1 3 2 2’ 4 5 7’ 6 7 Dynamic Instrumentation Original code Code cache Exits point back to Pin Pin Pin fetches trace starting block 1 and start instrumentation

  46. 1’ 2’ 7’ Dynamic Instrumentation Original code Code cache 1 3 2 4 5 6 7 Pin Pin transfers control into code cache (block 1)

  47. 1’ 3’ 1 3 2 5’ 2’ 4 5 6’ 7’ 6 7 Dynamic Instrumentation Original code Code cache trace linking Pin Pin fetches and instrument a new trace

  48. Implementation Challenges • Linking • Straightforward for direct branches • Tricky for indirects, invalidations • Re-allocating registers • Maintaining transparency • Self-modifying code • Supporting MT applications…

  49. Redirect all other pthreads function calls to application’s libpthread set up signal handlers System’s libpthread signal handler Pintool Pin’s mini-libpthread signal handler Pin’s Multithreading Support • Thread-safe accesses Pin, Pintool, and App • Pin: One thread in the VM at a time • Pintool: Locks, ThreadID, event notification • App: Thread-local spill area • Providing pthreadsfunctions to instrumentation tools Application

  50. Pin Overhead • SPEC Integer 2006

More Related