460 likes | 476 Views
Explore the latest electroweak physics results from the Tevatron collider, including cross sections, leptonic decays, background constraints, and more. Learn about the CDF and DØ collaborations in deep-inelastic scattering. Susana Cabrera from Duke University presents insights into W/Z physics at the Tevatron.
E N D
Electroweak results at the Tevatron Susana Cabrera for the CDF and D0 collaborations XXIIth International Workshop on Deep-Inelastic Scattering Susana Cabrera, Duke University
Electroweak Physics at Run II and Beyond SM W cross section Lepton Universality W asymmetry Constrain PDFs Higgs Mass constrain Z cross section W mass Direct Γ(W) sin2(θW), Anomalous quark couplings R: Indirect Γ(W) Bkgs top and Higgs Z’ resonances Z Forward-Backward Asymmetry WW/W/Z cross sections Anomalous TGC Susana Cabrera, Duke University
TheTevatron collider in Run 2 • Increased instantaneous luminosity: • Typical(moving target):4-5 x 1031 cm–2 s-1 • Record: ~7.2 x 1031 cm–2 s-1 • Tevatron has delivered in total~450 pb−¹ • Medium term: FY2003 • Base goal: 230 pb−¹ Design: 310 pb−¹ • Long term, by the end of FY09 • Base goal: 4.4 fb−¹ Design: 8.5 fb−¹ • Tevatron is a proton-antiproton collider operating withEbeam=980 GeV • 36 p and p bunches 396 ns between bunch crossing. Susana Cabrera, Duke University
Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan 2002 2003 2004 200 pb-1 Total Luminosity (pb-1) 64 pb-1 CDF Run I Delivered To Tape Store Number Run II Luminosity:CDF • ~350pb−¹ on tape. • Data taking efficiency > 80% • Dead time typically <5% • dL~ 6% (from inel& acceptance systematic) • Physics Analyses: • Between 64 and 200 pb-1 taken Mar 2002 – Sep 2003 Susana Cabrera, Duke University
Run II Luminosity:DØ • DØ has ~273pb−¹ on tape. • Data taking efficiency around 85% with full detector readout. • dL~ 6.5% (from inel) • dL~ 10% (2003 results) • Between 14 and 160 pb-1 taken July 2002 – Sep 2003 DØ data for Dis2004 . Susana Cabrera, Duke University
CDF Run II Detector • From Run I: • Solenoid • Central muon system • Central calorimeter ||= 1. • New For Run II: • Front-end DAQ • Trigger:Track (L1) and Displaced Track (L2) • Silicon Tracker (8 Layers) ( 2.0) • Central Outer Tracker • ( 1.0) • Plug Calorimeters • (1.0 3.6) • Extended Muon Coverage ( 1.5, gaps filled in) ||=2. Susana Cabrera, Duke University
e & at CDF Run II • Loose : • High Pt isolated track pointing to a gap in the - coverage ||<1.2 • MIP requirements. • Tight : • pointing to a -stub ||<1. • measured with Z • Trigger : 88%-95% • ID : 85%-90% • Central e: ||<1.2 • Et>20-25 GeV • EM cluster + Drift chamber track,Pt>10 GeV • Plug e: 1.2<||<2.0-2.8 • EM cluster (+ Silicon track) • measured with Zee Trigger : 100%, Et>30 GeV ID : >[80-94]% Drift chamber • e& mis-identification probability measured with dijet events • Veto cosmics using timing information and track information. • Veto from jets (mostly b) using calorimeter-Iso and track-Iso Susana Cabrera, Duke University
Overview of DØ Detector • Excellent calorimetry, hermetic detector. • Upgraded system for better -ID Susana Cabrera, Duke University
e/ p q Z(W) p q e/ () W/Z Physics at the Tevatron. • W/Z production: qq dominated. • RunII: millions of Ws and 100ks of Zs. • Leptonic decay modes to avoid high QCD background Wl BR~11% Zl+l- BR~3% Susana Cabrera, Duke University
CDF BR(Ze+e-) L~72pb-1 h(1st e) 1.0 h(e) 1.0 h(2nd e) 2.8 Extended coverage in the forward 2.8 • 66 < m(ℓℓ)/GeVc-2 < 116 • Small backgrounds from QCD, Z/W→τless than 1.5%: 6218 • Systematics : ~5.7%(2003) ~2% (improved material description) (22.74 ± 0.48)% BR(Zee)=250.53.8 pb (NNLO theory: Martin,Roberts,Stirling,Thorne) Susana Cabrera, Duke University
DØBR(Ze+e-) L~41.6pb-1 • Z → e+ e− signal: • 2 isolated central electrons ||<1.1 with Et>25 GeV • No track match requirement, but shower shape and EmFrac requirements. • 70 < m(ℓℓ)/GeVc-2 < 110 • QCD bkg shape from data, by fitting signal and bkg distributions. • 1139 candidates after bkg substraction. • A x =9.3% Bkg Bkg+MC Signal Data BR(Zee)=250.53.8 pb (NNLO theory: Martin,Roberts,Stirling,Thorne) Susana Cabrera, Duke University
CDF BR(Z+-) L~72pb-1 • Z → +− signal: • Two opposite charge ’s Pt>20GeV : Both: isolation + MIP +track quality • 1st : + stub in CMUP or CMX. • Cosmic veto: timing plus d0 • 66 < m(ℓℓ)/GeVc-2 < 116 • Small backgrounds from QCD, Z/W→τ, cosmics (μ) less than 1.5% (13.3+13.5-11.8) • Systematics : ~4.8%(2003) ~2.8% BR(Z)=250.53.8 pb (NNLO theory: Martin,Roberts,Stirling,Thorne) Susana Cabrera, Duke University
DØBR(Z+-) L~117pb-1 • Z → +− signal: Two opposite charge ’s Pt>15GeV , at least 1 isolated,cosmic veto: timing plus d0 • m(ℓℓ)/GeVc-2 > 30 • Very low Backgrounds: QCD bb (0.6 0.3)% Z (0.5 0.1)% • 6126 candidates after bkg substraction A x =16.40% BR(Z)=250.53.8 pb (NNLO theory: Martin,Roberts,Stirling,Thorne) Susana Cabrera, Duke University
Summary CDF & DØ BR(Zl+l-) Susana Cabrera, Duke University
·BR(W) = 2.62 0.07stat 0.21sys0.16lumnb CDF Wt and Z h+ℓ− Signals L~72pb-1 • Count tracks in 10o-cone and veto tracks in 30o isolation cone • Reconstruct 0 candidates in Shower Max detector • Combined mass < m() • Wt : 2345 in ~72 pb-1Background ~26 % (dominated QCD) Susana Cabrera, Duke University
DØBR(Wl) L~41(e)pb-1 L~17.3 () pb-1 1 tight central e isolated Et>25 GeV Met>25 GeV 1 tight isolated Pt>20 GeV Met>20 GeV W μn W en BR(Wl)=268740 pb (NNLO theory: Martin,Roberts,Stirling,Thorne) Susana Cabrera, Duke University
CDF BR(Wl) L~72pb-1 1 tight central e isolated Et>25 GeV Met>25 GeV 1 tight isolated Pt>20 GeV Met>20 GeV • Systematics : ~3.7%(2003) ~2.2% BR(Wl)=268740 pb (NNLO theory: Martin,Roberts,Stirling,Thorne) Susana Cabrera, Duke University
L~64pb-1 CDF BR(We) PLUG • Electron: Plug EM cluster: Et>20, 1.1<||<2.8 • ID:Had/Em,E/P and cal-Iso. • Silicon track matched with shower-max plug detector • Met>20 • Trigger: Met>15 & Plug EM cluster: Et>20 • Main systematics: plug energy scale, PDF,material BR(Wl)=268740 pb (NNLO theory: Martin,Roberts,Stirling,Thorne) Susana Cabrera, Duke University
Summary CDF & DØ BR(Wl) Susana Cabrera, Duke University
Summary CDF & DØ Susana Cabrera, Duke University
Combining e and μ channels • Assuming lepton universality, combine W and Z results • correlated systematics effects accounted for Susana Cabrera, Duke University
3.3677±0.024 NNLO (PDG) From LEP: (3.366 ± 0.0002)% Re & R R BR(W→ℓν) and Γ(W) Using NNLO calculation Γ(W→ℓν)=226.4 ±0.4 MeV (PDG): Susana Cabrera, Duke University
CDF & DØ BR(W→ℓν) and Γ(W) ‡NNLO@1.96 : 10.66 ± 0.05 (J.Stirling) Using the NNLO calculation of (Wℓℓ) Current World Ave: 2092 ± 40 MeV LEP direct measurement : 2150 ± 91 MeV Susana Cabrera, Duke University
BR(W ) 0.99 0.04stat 0.07sys = BR(W e ) -e Universality in W Decays • Calculate R separately for e and μ channels: • From W e and W t cross sections : Susana Cabrera, Duke University
e+ θ e− P Forward-backward asymmetry • Unique at Tevatron (off Z pole) • Directly probes V,A sin2W,u, • d couplings to Z • Sensitive to New Physics: agreement with SM prediction. p (1st e) 1.0 (2nd e) 2.8 5438candidates in ~72pb-1 Susana Cabrera, Duke University
Di-boson Production and TGC qq’WTGC WW qqZTGC Z ZZ Susana Cabrera, Duke University
First: Select W l 0 DiBoson Production: W W(e) Et(e)>25 GeV, cal-iso CDF |e|<1.1 DØ|e|<2. 3 Et>25 GeV W() Pt()> 20 GeV, CDF ||<1.0 DØ ||<1.6 Et>20 GeV Then: select CDF Et ()>7 GeV DØ Et ()>8 GeV R(,l)>0.7 GeV | |<1.1 Cal & trk-iso Shower Maximum Detector Pre-shower Detector Susana Cabrera, Duke University
CDF: W ·BR(pp Wg ℓn ℓg) = 19.3 1.3pb NLO prediction (U. Baur): (W)BR(Wl) = 19.7 1.7 (stat) 2.0 (sys) 1.1 (lumi) pb Susana Cabrera, Duke University
DØ W ·BR(pp Wg ℓn ℓg) = 16.4 0.4pb NLO prediction (U. Baur): (W)BR(Wl) = 19.3 2.7 (stat) 6.1 (sys) 1.2 (lumi) pb Susana Cabrera, Duke University
DiBoson: Z NON-SM !! First: Select Z l+l- Z e+e-:Et(e)>25 GeV, |e|<2.8 Z +-: Pt>20 GeV, ||<1.1 Mll>40 GeV Then: select Et ()>7 GeV R(,l)>0.7 GeV | |<1.1 Cal & trk-iso Susana Cabrera, Duke University
NLO prediction(U. Baur): (LO + ET(γ) dependent k –factors): ·BR(pp Z ℓℓ) = 5.4 0.4pb CDF: Z (Z)BR(Zll) =5.3 0.6 (stat) 0.4 (sys) 0.3 (lumi) pb Susana Cabrera, Duke University
CDF: WW (Two approaches) Two complementary approaches • Dileptons: l+,l-: identified e, • Reject 76<Mll<106 & ET / ET <3 • ET>25 • No High Et jets • Opposite sign & Isolation DY, Z WZ/ZZ, Z top dilepton Fakes • (Identified e,) + track • Reject ET / ET <5.5 in all Mll • ET>25 • Njets<=1 • Opposite sign & Isolation ET / ET Bkg with instrumental ET High S/B Increased acceptance Susana Cabrera, Duke University
CDF: WW cross section NLO (MFCM, Ellis& Campbell) WW=12.50.8 pb e, l+track Susana Cabrera, Duke University
CDF: WW Beyond SM ggHWW 140<MH<180GeV/c2 Anoumalous TGC WWZ/WW Susana Cabrera, Duke University
CDF: WW e candidate Susana Cabrera, Duke University
W mass prospects • CDF Run I (μ) mW = 80.465 ± 100(stat) ± 103(sys) MeV • CDF Run II for 250/pb estimate (μ): = X ± 55(stat) ± 80(sys) MeV Calorimeter: right energy scale and resolution direct extraction of (W) Z → μμ • Data • Simulation • Total background W → μν • Data • Simulation direct extraction of G(W) momentum scale J/Y(2-5 GeV) (8-10 GeV) Z (high Pt) Mmm(GeV/c2) MT(m,n) (GeV/c2) Susana Cabrera, Duke University
Conclusions • Electroweak measurements at the Tevatron: • Benchmarks to understand the CDF & DØ detectors. • Important backgrounds for Top and Higgs physics. • Ideal scenario to test the Standard Model. • Please tune in to the talks: • Higgs (S.Beauceron) SUSY (K.Kurca) Leptoquarks (D.Ryan) and other (A.Pompos) searches at the Tevatron. • Diboson Production cross section measurements anomalous TGC. • Expect full set of publications based on 200 /pb between now and the end of 2004. Susana Cabrera, Duke University
Backup slides Susana Cabrera, Duke University
Electron Reconstruccion Calorimeter + tracking information • Central electron: ||<1.2 • EM cluster + COT track • Plug electron: 1.2<||<1.8 • EM cluster (+ Silicon track) • Isolation: fraction of E in a cone 0.4 • Loose electrons: Et>20-25 GeV, • Pt>10 GeV, Ehad/Eem, track quality and fiducial requirements. • Tight electrons: +E/P, shower profiles, track:showerMax matching • measured with Zee • Trigger : 100%, Et>30 GeV • ID : tight e >80% , loose e >94% • Large fractional energy deposit in EM sector. Track match requirement. • Isolation: fraction of energy in hollow cone between 0.2 –0.4 • Shower shape distribution,E/P • measured with Zee • Trigger : 100% above 30 GeV • ID > 90%, track matching included. • E/P:75-80% Mis-identification probability measured with dijet events Susana Cabrera, Duke University
Muon Reconstruccion • Loose muon: • High Pt isolated track pointing to a gap in the muon coverage ||<1.2 • MIP requirements. • Tight muon: • High Pt isolated track pointing to a muon stub ||<1. • measured with Z • Trigger : 88%(CMUP)-95%(CMX) • ID : 85%(CMUP)-90%(CMX) Calorimeter + tracking + stub information. • -track measured twice: • Toroidal spectrometer: position and timing information before & after the magnet. • Precision Pt measured in central fiber tracker • Track match: position and P. • measured with Z • Trigger : 50% (single ) • Tracking > 95%. • Isolation:91% Mis-identification probability measured with dijet events Veto cosmics using timing information and track information. Veto from jets (mostly b) using isolation: calorimeter (CDF & DØ)and track (DØ) Susana Cabrera, Duke University
DØZ th+tℓ− Signals L = 68 pb-1 Z ( ) ( + n0) Backgrounds - QCD from bb or /K decay - W or + jet - Z visible mass (GeV) Susana Cabrera, Duke University
CDF: WW (III) Susana Cabrera, Duke University
CDF: WW (IV) Susana Cabrera, Duke University
TheTevatron collider in Run 2 • Tevatron is a proton-antiproton collider operating with Ebeam=980 GeV • 36 p and p bunches 396 ns between bunch crossing. • Run 1: 6x6 bunches with 3.5s • Increased instantaneous luminosity: • Typical: 4-5 x 1031 cm–2 s-1 • Record: 6.1 x 1031 cm–2 s-1 • Tevatron has delivered~430 pb−¹ • Long term, by the end of FY09 • Base goal: 4.4 fb−¹ • Design: 8.5 fb−¹ Susana Cabrera, Duke University
CDF Run II Detector • From Run I: • Solenoid • Central muon system • Central calorimeter • New For Run II: • Front-end DAQ • Trigger:Track (L1) and Displaced Track (L2) • Silicon Tracker (8 Layers) ( 2.0) • Central Outer Tracker • ( 1.0) • Plug Calorimeters • (1.0 3.6) • Extended Muon Coverage ( 1.5, gaps filled in) Susana Cabrera, Duke University
Overview of DØ Detector • New Inner tracking (silicon tracker, scintillating fiber tracker,preshowers) with 2T superconducting solenoid • Excellent calorimetry, hermetic detector. • Upgraded system for better -ID • Faster readout electronics, new trigger and DAQ. Susana Cabrera, Duke University