1 / 8

Extracting Factors from Polynomials

Extracting Factors from Polynomials. Learn to extract the greatest common factor from a polynomial. Extracting Factors. To factor a polynomial, we first begin by determining if the polynomial has a monomial factor other than 1.

brasen
Download Presentation

Extracting Factors from Polynomials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extracting Factors from Polynomials Learn to extract the greatest common factor from a polynomial.

  2. Extracting Factors • To factor a polynomial, we first begin by determining if the polynomial has a monomial factor other than 1. • We need to check to see if the terms of the polynomial have a GCF (greatest common factor). • If so, we can extract that monomial factor by dividing the polynomial by that factor. • The quotient from that division is the second factor of the polynomial. Polynomials

  3. Finding the GCF To find the greatest common factor (GCF) of two (or more) terms in a polynomial: • Find the prime factorization of the coefficient of each term and then expand each monomial term. • Find all of the common factors. • Multiply these common factors together to get the greatest common factor (GCF). Polynomials

  4. 45 75 25 5 3 9 3 5 3 5 Prime Factorization To review how to find the prime factorization of a number, let’s look at a couple of examples. 1. 2. Prime Factorization of 75 is 3·5·5 Prime Factorization of 45 is 3·3·5 Polynomials

  5. Expanding a Monomial • To expanda monomial, we find the prime factorization of the coefficient, and write the variables without exponents. • For example: 24x2y3 = 15a2b = 8xyz = 2 · 2 · 2 · 3 · x · x · y · y · y 3 · 5 · a · a · b 2 · 2 · 2 · x · y · z Polynomials

  6. Finding the GCF • To find the GCF of the terms in the polynomial, expand each term and find the common factors: • Let’s look at this example: 15x+ 45x2 15x= 3 · 5 · x 45x2= 3 · 3 · 5 · x · x GCF=3 · 5 · x=15x Polynomials

  7. Factoring a Polynomial • Once you have found the GCF, that will be the first factor. It is written in front of a set of parentheses for the paired factor. • The numbers and variables that are left after the GCF has been removed go on the inside of the parentheses. This becomes the paired factor. 45x2= 3 · 3 · 5 · x · x 15x= 3 · 5 · x The GCF was 15x 1 3x 15x ( + ) 15x+ 45x2 = Polynomials

  8. Finding the GCF • Let’s try another example 4n 4 + 6n 3– 8n 2 6n 3= 2 · 3 · n·n · n 4n 4= 2 · 2 · n · n · n · n 8n 2= 2 · 2 · 2 · n · n GCF= 2 · n · n =2n 2 2n 2 3n 4 4n 4+ 6n 3 – 8n 2= 2n 2( +– ) Polynomials

More Related