1 / 24

EL 402

EL 402. Xavier Neyt. Regulation. Why? Stabilize unstable systems e.g. inverted pendulum Modify the dynamic behaviour e.g. car suspension, B747 Increase the “drive precision” e.g. static error (lift). Regulation. How? Combine two systems the actual system S(p) the control system R(p)

Download Presentation

EL 402

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EL 402 Xavier Neyt

  2. Regulation • Why? • Stabilize unstable systems • e.g. inverted pendulum • Modify the dynamic behaviour • e.g. car suspension, B747 • Increase the “drive precision” • e.g. static error (lift) EL 402

  3. Regulation • How? • Combine two systems • the actual system S(p) • the control system R(p) • Such that the new system has the desired behaviour • poles at a convenient position EL 402

  4. U(p) Y(p) R(p) S(p) Combination of systems • Serial combination • : F(p) = R(p) S(p) • does not move the poles of S(p) • ! Zeroes of R(p) should NOT cover unstable poles of S(p) EL 402

  5. Combination of systems • Parallel combination • : F(p) = R(p) + S(p) • does not move the poles of S(p) R(p) U(p) Y(p) + S(p) EL 402

  6. Combination of systems • Feedback combination • : F(p) = RS/( 1 + RS) • poles of F = zeros of 1+RS U(p) + Y(p) + R(p) S(p) - EL 402

  7. Example • S(p): First order system: • : S(p) = 1/( pT - 1) • pole in p = 1/T  unstable • R(p): Proportional (constant) • : R(p) = K • F(p) = K/(pT -1 + K) • pole in p = (K-1)/T EL 402

  8. Example EL 402

  9. Example EL 402

  10. Nyquist diagram • Plot of RS(p) in parametric form • : x = Re( RS(p) ) • : y = Im( RS(p) ) • for p  Nyquist contour • Can be deduced from the Bode plot • in the simple cases... EL 402

  11. Bode diagram EL 402

  12. Nyquist diagram EL 402

  13. Stability • Aim of the Nyquist theorem • determine the stability of the closed-loop system • knowing the stability of the open-loop system EL 402

  14. Stability • How does it work? • Need to know the zeros of 1+RS(p) • These zeros need to be located p < 0 • 1+RS(p) has the same poles as RS(p) • P1+RS = PRS • Principle of the argument: • T0 = N - P • T-1 = N1+RS - P1+RS = N1+RS - PRS = PF - PRS EL 402

  15. Stability • Nyquist theorem • :T-1 = PF - PRS • La boucle fermee sera stable ssi le contour de Nyquist enlace (ds le sens negatif) autant de fois le point (-1,0) que le systeme en boucle ouverte possede de poles instables • De gesloten lus zal stabiel zijn als en slechts als het aantal toeren (in negatieve zin) die de Nyquist kromme rond het punt (-1,0) doet gelijk is aan het aantal onstabiele polen van de open lus. EL 402

  16. Example: unstable 1st order sys. EL 402

  17. Stability • Nyquist theorem • particular case: the open-loop system is stable • PRS = 0  T-1 = 0 • If the open-loop system is stable, the closed-loop system will be stable iff the Nyquist curve does not go round the point (-1,0) EL 402

  18. Example: stable 4th order sys. EL 402

  19. Robustness • Introduces the notion of stability margins • define some kind of distance between the point (-1,0) and the Nyquist curve. • Most often used distances • gain margin • phase margin EL 402

  20. Robustness • Most often used distances • gain margin • Distance to the point having a phase = -180º • Maximum gain allowed in R without compromising the system stability • maximum & minimum gain • phase margin • Angle to the first point having unit gain (0dB gain) • How much phase rotation is R allowed to introduce without compromising the system stability • max phase lag & max phase lead EL 402

  21. Gain/Phase margins Unit Gain circle Phase margin Gain margin EL 402

  22. Gain/Phase margins Unit Gain circle Phase margin Gain margin EL 402

  23. Gain margin Phase margin Gain/Phase margins -180° EL 402

  24. Drive Precision EL 402

More Related