1 / 4

p : 3946183951 A : 537680305 B : 1059676324 G E : [ 1152222263 3133703258 ]

CONTOH PERHITUNGAN. ENKRIPSI. p : 3946183951 A : 537680305 B : 1059676324 G E : [ 1152222263 3133703258 ] N G : 3946206427 ε : 100 : [ 3539395206 1802765602 ] Plaintext : Mat. Kunci 32 bit. lpesan  Panjang pesan = 3 (b anyaknya karakter plaintext )

brenna
Download Presentation

p : 3946183951 A : 537680305 B : 1059676324 G E : [ 1152222263 3133703258 ]

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CONTOH PERHITUNGAN ENKRIPSI p : 3946183951 A : 537680305 B : 1059676324 GE : [1152222263 3133703258] NG : 3946206427 ε: 100 : [3539395206 1802765602] Plaintext : Mat Kunci 32 bit lpesan Panjang pesan = 3 (banyaknya karakter plaintext) bpesan  ceil ( (32/8) – 1 ) = 3 (dipotong setiap 3 karakter) ipesan  ceil (lpesan / bpesan) = 3/3 = 1 (pemotongan pesan)

  2. pesan: Mat ASCII Biner Biner 8 bit 1001101 01001101 M 77 ASCII Biner Biner 8 bit 1100001 01100001 a 97 ASCII Biner Biner 8 bit 1110101 01110100 t 116 Desimal 5071220 m

  3. pesan: Mat m = 5071220 xj = m. ε + j , j [0, ε-1]  Sj = xj3 + A.xj + B (mod p) yj = akar dari Sj PM = (xj , yj) x0 = 5071220(100)+0 = 507122000  S0 = 211020104 y0 = akar S0 =Tdk memiliki akar. S0(p-1)/2 = -1(mod p) x1 = 5071220(100)+1 = 507122001  S1 =3164013225 y1 = akar S1 =Tdk memiliki akar. S1(p-1)/2 = -1(mod p) x2 = 5071220(100)+2 = 507122002  S2 =1267370450 y2 = akar S2 =Tdk memiliki akar. S2(p-1)/2 = -1(mod p) x3 = 5071220(100)+3 = 507122003  S3 = 2413459687 y3 = akar S3 = 3301895794 dan 644288157 Titiknya  (507122003 , 3301895794) dan (507122003 , 644288157) ………… sampai j=ε-1=99. Dipilih 1 titik ( PM )  ( 507122095 , 1075291432) Dipilih j [0,ε-1] = [0, 99]  j = 95 x95 =5071220(100)+82=507122003 S95 =375659790 y95 = akar S95 = 1075291432 dan 2870892519 Titiknya  (507122095 , 1075291432) dan (507122095 , 2870892519) Dipilih 1 titik ( PM )  ( 507122095 , 1075291432)

  4. pesan: Mat m = 5071220 PM = ( 507122082 , 307629979 ) ENKRIPSI ElGamal ECC k [1, NG – 1] = [1,3946206426]  912120288 P1 = k.GE = (3227285189 , 2965666882) P2 = PM + k. = PM + (736261778 , 2068514041) = (3828826938 , 1504649631) PC = (P1,P2) = ((3227285189, 2965666882),(3828826398,1504649631)) PC= ( 3227285189 2965666882 3828826398 1504649631 )

More Related