1 / 7

Bagian 5 Beberapa Problem Optimasi : Curve Fitting

Metode Komputasi. Bagian 5 Beberapa Problem Optimasi : Curve Fitting. This is a file from the  Wikimedia Commons. Dosen :. Deni Saepudin : Ruang C114 Telp . +628122086193. Curve Fitting.

brick
Download Presentation

Bagian 5 Beberapa Problem Optimasi : Curve Fitting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MetodeKomputasi Bagian5 Beberapa Problem Optimasi: Curve Fitting This is a file from the Wikimedia Commons. Dosen: DeniSaepudin : Ruang C114 Telp. +628122086193

  2. Curve Fitting • Merupakan proses membangunkurvaataufungsimatematika yang paling cocok (best fit) denganbarisan data point. • Curve fitting dapatberupa: • interpolasi (kecocokandengan data dituntutmutlak), • smoothing (fungsi yang digunakanharus smooth) dan • regressi (kecocokandengan data mengakomodasi random error)

  3. Ilustrasi: Model PenjualanRumah http://people.hofstra.edu/stefan_waner/realworld/calctopic1/regression.html Penyederhanaan

  4. Linear Curve Fitting Bilajumlahpenjualandiasumsikanbergantung linear terhadapharga Y = 1x + 0, x menyatakanharga Y menyatakanjumlahpenjualan Bagaimanamenaksir parameter 1dan0? Definisi: Jarakvertikal Jarakvertikalantaragaris Y = 1x + 0ketitik Pi(xi, yi) ei = |yi – (1xi + 0)| = |yi – 1xi –0 | Garis Y = 1x + 0dipilihsehinggajumlahkuadratjarakvertikalterkecil

  5. Linear Least Square • Alternatif 1: MetodeKalkulus • Alternatif 2 : Metode Gradient Descent • Terapkanmetode Gradient descent utk problem tsb! Gariskuadratterkecil Y = 1x + 0untukhimpunantitik (x1,y1), (x2,y2),…,(xn,yn) dapatdiperolehdarimasalahpeminimuman Bagaimanamenentukannilai1dan0yang memenuhimasalahoptimasi?

  6. Nonlinear Fitting (linearisasi) Contoh: Data Penjualankomputercompaq Diberikansekumpulan data: (x1,y1),(x2,y2),…,(xn,yn) Jikahubunganantara Y dan X diasumsikan Y = eX, dapatdilakukanlinearisasi lnY = ln  +X (linearisasi) Maka Ytopi = lnY 0 = ln  1 = 

  7. Latihan: • Carilah model keuntunganpenjualankomputerberdasarkan data penjualankomputer Compaq • Gunakanasumsibahwamodelnyaeksponesial • Buat plot data empirikdan model yang diperolehdalamsatugambar

More Related