310 likes | 452 Views
HI 21cm Signal from Cosmic Reionization IAU 2006, Long Wavelength Astrophysics Chris Carilli (NRAO). Ionized. Neutral. Reionized. Chris Carilli (NRAO) Berlin June 29, 2005. WMAP – structure from the big bang. Hubble Space Telescope Realm of the Galaxies. Dark Ages. Epoch of Reionization.
E N D
HI 21cm Signal from Cosmic Reionization IAU 2006, Long Wavelength Astrophysics Chris Carilli (NRAO) Ionized Neutral Reionized
Chris Carilli (NRAO) Berlin June 29, 2005 WMAP – structure from the big bang
Dark Ages Epoch of Reionization Age of Enlightenment • last phase of cosmic evolution to be tested • bench-mark in cosmic structure formation indicating the first luminous structures
HI 21cm observations of Cosmic Reionization, and beyond • Most direct probe of epoch and process of reionization • Rich in physical diagnostics • Only probe of cosmic evolution during ‘dark ages’ • TALK: • Current observational constraints on reionization (Fan et al. ARAA 2006) • Predicted HI 21cm signals • Telescopes and Challenges
Reionization: the movie 8Mpc comoving Gnedin 03
Constraint I: Gunn-Peterson Effect End of reionization? f(HI) > 1e-3 at z = 6.3 vs. <1e-4 at z= 5.7 Fan et al 2006
Constraint II: CMB large scale polarization: Thompson scattering during reionization • Scattered CMBquad. => polarized • Horizon scale => 10’s deg • t = 0.09+/-0.03 => z_reion= 11+/3 TT TE EE Fan et al 2003 Page + 06
Current observations => z_reion = 6 to 11? • Not ‘event’ but complex process, large variance time/space • GP => occurs in ‘twilight zone’, opaque l_obs< 0.9 mm
Limitations of current measurements:CMB polarization • t_e = integral measure through universe=> allows many reionization scenarios • Still a 3s result (now in EE vs. TE before)Gunn-Peterson effect • t_Lya >>1 for f(HI)>0.001 => low f(HI) diagnostic • t to f(HI) conversion requires ‘clumping factor’ (cf. Becker, Rauch, Sargent 2006)
Studying the pristine IGM into the EOR using redshifted HI 21cm observations (100 – 200 MHz) • Large scale structure: • cosmic density, d • neutral fraction, f(HI) • Temp: T_K, T_CMB, T_spin • Heating: Lya, Xrays, shocks
Signal I: Global (‘all sky’) reionization signature in low frequency HI spectra IGM heating: T_spin=T_K > T_CMB Lya coupling: T_spin=T_K < T_CMB Gnedin & Shaver 03 21cm ‘deviations’ < 1e-4 wrt foreground
Signal II: 3D Power spectrum analysis d only LOFAR d + f(HI) SKA McQuinn + 06
Signal III: HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 7.6 • DT_B(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK
Cosmic Webafter reionization Ly alpha forest at z=3.6 (d < 10) Womble 96 N(HI) = 1e13 – 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2
Signal IV: Cosmic web before reionization: HI 21Forest 19mJy z=12 z=8 130MHz • radio G-P (t=1%) • 21 Forest (10%) • mini-halos (10%) • primordial disks (100%) • expect 0.05 to 0.5 deg^-2 at z> 6 with S_151 > 6 mJy
Signal V: Cosmic Stromgren spheres around z > 6 QSOs • LOFAR ‘observation’: • 20xf(HI)mK, 15’,1000km/s • => 0.5 x f(HI) mJy • Pathfinders: Set first hard limits on f(HI) at end of cosmic reionization • Easily rule-out cold IGM (T_s < T_cmb): signal = 360 mK 5Mpc 0.5 mJy Wyithe et al. 2006
Signal VI: pre-reionization HI signal eg. Baryon Oscillations (Barkana & Loeb) • Very difficult to detect ! • z=50 => n = 30 MHz • Signal: 30 arcmin, 50 mk =>S_30MHz= 0.1 mJy • SKA sens in 1000hrs: • T_fg = 20000K => • rms = 0.2 mJy z=50 z=150
‘Pathfinders’: PAST, LOFAR, MWA, PAPER, … MWA (MIT/ANU) LOFAR (NL) PAST (CMU/China) PAPER Berk/NRAO
Challenge I: Low frequency foreground – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T = 100 (n/200 MHz)^-2.6 K Highly ‘confused’: 1 source/deg^2 with S_0.14 > 1 Jy
Solution: spectral decomposition (eg. Morales, Gnedin…) 10’ FoV; SKA 1000hrs All sky: SI deviations = 0.001 Freq Signal Foreground Power spectral analysis: Fourier analysis in 3D – different symmetries in freq space (ie. Different spectral chan-chan correlation)
Challenge II: Ionospheric phase errors – varying e- content • TIDs – ‘fuzz-out’ sources • ‘Isoplanatic patch’ = few deg = few km • Phase variation proportional to l^2 • Solution: • Wide field ‘rubber screen’ phase self-calibration Virgo A VLA 74 MHz Lane + 02
Challenge III: Interference 100 MHz z=13 200 MHz z=6 • Solutions: RFI Mitigation • Digital filtering • Beam nulling • Real-time ‘reference beam’ KNMD Ch 9 Digital TV
Solution – RFI mitigation: location, location location… 100 people km^-2 1 km^-2 0.01 km^-2
GMRT 230 MHz – HI 21cm abs toward highest z radio galaxy, 0924-220 z=5.2 RFI = 20 kiloJy ! 8GHz 1” 230Mhz0.5 Jy Van Breugel et al. rms(20km/s) = 5 mJy CO Klamer + z(CO)
Radio astronomy – Probing Cosmic Reionization • ‘Twilight zone’: study of first light limited to near-IR to radio l’s • First constraints: GP, CMBpol => reionization is complex and extended: z_reion = 6 to 11 • HI 21cm: most direct probe of reionization • Low freq pathfinders: All-sky, PS, CSS • SKA: imaging of IGM
Constraint III: Cosmic Stromgren Spheres • 1148+5251: Accurate z_hostfrom CO: z=6.419+/0.001 • Proximity effect:photons leaking from 6.32<z<6.419 White et al. 2003 • ‘time bounded’ Stromgren sphere: R = 4.7 Mpc • f(HI) = 1e-5 R^-3 (t_qso/1e7) yrs • <f(HI)> ~ 0.1 for sample 19 QSOs at z>5.7 (Fan et al. 06; Wyithe et al. 04)