180 likes | 347 Views
You have 20 minutes…. Pick up everything you need off the back desk to finish the practice test from yesterday. Make sure your scan tron has your name on it. Check your Unit 5 homework also!. Trigonometry . Mary Lauren Willis Sydnee Wilcher Kaylee S. Kayla S. Periodic Functions.
E N D
You have 20 minutes… • Pick up everything you need off the back desk to finish the practice test from yesterday. • Make sure your scan tron has your name on it. • Check your Unit 5 homework also!
Trigonometry Mary Lauren Willis Sydnee Wilcher Kaylee S. Kayla S.
Periodic Functions • Periodic Function- repeats a pattern of y-values at regular intervals • Period- horizontal length of one cycle • Cycle-one complete pattern • Amplitude- height; measures variations in the function values • ½(Maximum-Minimum)
1). Highlight one cycle 2). Period? 3). Amplitude? 4). Graph the midline Amplitude deals with the ___ value. Period deals with the ___ value.
Examples • Convert measure to radians or degrees: • 260° • -220° • 5π/4 • -6π/5
How to graph trigonometric functions • y= asin b(x-c)+d • y= acos b(x-c)+d • a= amplitude • If negative- flip • b= period • c= horizontal shift • d= vertical shift
Sine and cosine graphs Graph sinΘ and cosΘ Period= 2π Amplitude=1 ~amplitude and period correspond~
Shifting sine and cosine graphs Shift y=sin(x) π/2 units right Equation:
transformations Domain: Range: Amplitude: Period: Phase Shift: Vertical Slide: y=2cosΘ
Graph tangent Domain: Range: Amplitude: Period: Zeroes: y=tanΘ
Trigonometric equations • a impacts the amplitude of the graph • b alters the period • A change in c causes a horizontal shift • When c is positve(x-c), the graph shifts right • When c is negative(x+c), the graph shifts left • A change in d causes a vertical shift • When d is positive, the graph shifts up • When d is negative, the graph shifts down