1 / 16

NMR study in superconductors

NMR study in superconductors. Kitaoka Lab. M1 Nitta Mariko. Contents. NMR measurement principle of NMR, NMR spectrum Knight shift relaxation rate 1/ T 1 Results of measurement Knight shift 1/ T 1 Summary My work.

brigitte
Download Presentation

NMR study in superconductors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NMR study in superconductors • Kitaoka Lab. • M1 Nitta Mariko

  2. Contents • NMR measurement principleof NMR, NMR spectrum Knight shift relaxation rate 1/T1 • Results of measurement Knight shift 1/ T1 • Summary • My work

  3. NMR (Nuclear Magnetic Resonance)measurement NMR Intensity Ex. I=1/2 (Fe) ω= gH0 m=-1/2 I=1/2 gℏ H0 H m=+1/2 I H0=0 H0≠0 Zeemann splitting e Zeemann interaction Em=-gℏH0m HZeemann= -gℏI・H0

  4. Knight shift NMR Intensity I H e ・Orbital angular momentum(H0rb) ・Magnetic dipole interaction (Hdip) ・Fermi contact interaction(HF) ・Inner core polarization interaction (Hcp) HZeemann = -gℏI・(H0+⊿H) ⊿H = Horb+ Hdip + HF+ Hcp

  5. ω= g (Hres+⊿H) = g Hres(1+K) Knight shift NMR Intensity I H e γ:gyromagnetic ratio Knight shift

  6. What can we know from Knight shift ?~Symmetry of Cooper pair~ K (T) = Ks(T) +Korb Constant Ks (T)~ A χS(T)(spin susceptibility) Tc Spin triplet Sr2RuO4 Tc Spin singlet Al Ks/Kn Ks S=1 S=0 Sr2RuO4: Ishida et al.(1998) UPt3 : Tou et al (1996) L. Fine et al. (1969 ) T/Tc T

  7. What can we know from Knight shift ?~Symmetry of Cooper pair~ Cooper pairing state S=0 orbital part spin part even function (s, d wave) Φ(-(r1-r2)) =Φ(r1-r2) spin-singlet s (s2,s1) = -s (s1,s2) S=1 s-wave d-wave odd function (p wave) Φ(-(r1-r2)) = -Φ(r1-r2) spin-triplet s (s2,s1) = s(s1,s2) ψ(r1-r2;s1,s2) = Φ(r1-r2) σ(s1,s2) p-wave orbital spin

  8. Excitation energy Release the energy Relaxation rate 1/T1 What isT1?? T1 ~ spin-lattice relaxation time I=-1/2 I=+1/2 nuclear spin electronic spin spin-lattice interaction Energy- transfer Time constant T1 1/T1 measurement is a good probe for electronic states !

  9. 1/T1 in various superconductors unconventional superconductors (non BCS) NS(E) NS(E) Point nodes Line nodes N0 N0 EF EF +Δ0 EF +Δ0 EF EF +Δ0 d-wave p-wave EF Conventional type (BCS) s-wave

  10. Summary NMR study Knight shift Cooper pair symmetry or Spin triplet Relaxation time 1/T1 Superconducting gap structure Spin singlet S=1 S=0 or BCS unconventional type Superconducting mechanism

  11. My work Fe-pnictide superconductor “11 series” “122 series” FeSe BaFe2As2 FeSelayer “1111 series” LaFeAs(O,F) FeAslayer FeAslayer Tc max= 8 K Tc max= 38 K F.C.Hsu et al.(2008) Tc max= 55 K M. Rotter et al.(2008)

  12. My work compare 1/T1 in1111,122,11system “La1111” “Ba122” “11” 57Fe- NMR 75As-NQR ~T5 ~T3 ~T3 unconventional superconductor

  13. My workLa1111 system ~s(+-)wave~ S(+-)wave a=4.0208Å OPT Tc=28 K OPT : Tc =28 [K] Heavily-OVD : Tc =5 [K] 75As-NQR experiment H-OVD Tc=5 K

  14. My workLa1111 system ~s(+-)wave~ OPT Hole electron εF ky a=4.0208Å M E Full gap Full gap kx k electron hole

  15. My workLa1111 system ~s(+-)wave~ H-OVD electron Hole εF ky a=4.0208Å M E Full gap Full gap kx k electron hole

  16. Future work “1111 series” LaFeAs(O,F) FeAslayer ? Fermi surface in Superconductivity Tc

More Related