250 likes | 585 Views
NMR study in superconductors. Kitaoka Lab. M1 Nitta Mariko. Contents. NMR measurement principle of NMR, NMR spectrum Knight shift relaxation rate 1/ T 1 Results of measurement Knight shift 1/ T 1 Summary My work.
E N D
NMR study in superconductors • Kitaoka Lab. • M1 Nitta Mariko
Contents • NMR measurement principleof NMR, NMR spectrum Knight shift relaxation rate 1/T1 • Results of measurement Knight shift 1/ T1 • Summary • My work
NMR (Nuclear Magnetic Resonance)measurement NMR Intensity Ex. I=1/2 (Fe) ω= gH0 m=-1/2 I=1/2 gℏ H0 H m=+1/2 I H0=0 H0≠0 Zeemann splitting e Zeemann interaction Em=-gℏH0m HZeemann= -gℏI・H0
Knight shift NMR Intensity I H e ・Orbital angular momentum(H0rb) ・Magnetic dipole interaction (Hdip) ・Fermi contact interaction(HF) ・Inner core polarization interaction (Hcp) HZeemann = -gℏI・(H0+⊿H) ⊿H = Horb+ Hdip + HF+ Hcp
ω= g (Hres+⊿H) = g Hres(1+K) Knight shift NMR Intensity I H e γ:gyromagnetic ratio Knight shift
What can we know from Knight shift ?~Symmetry of Cooper pair~ K (T) = Ks(T) +Korb Constant Ks (T)~ A χS(T)(spin susceptibility) Tc Spin triplet Sr2RuO4 Tc Spin singlet Al Ks/Kn Ks S=1 S=0 Sr2RuO4: Ishida et al.(1998) UPt3 : Tou et al (1996) L. Fine et al. (1969 ) T/Tc T
What can we know from Knight shift ?~Symmetry of Cooper pair~ Cooper pairing state S=0 orbital part spin part even function (s, d wave) Φ(-(r1-r2)) =Φ(r1-r2) spin-singlet s (s2,s1) = -s (s1,s2) S=1 s-wave d-wave odd function (p wave) Φ(-(r1-r2)) = -Φ(r1-r2) spin-triplet s (s2,s1) = s(s1,s2) ψ(r1-r2;s1,s2) = Φ(r1-r2) σ(s1,s2) p-wave orbital spin
Excitation energy Release the energy Relaxation rate 1/T1 What isT1?? T1 ~ spin-lattice relaxation time I=-1/2 I=+1/2 nuclear spin electronic spin spin-lattice interaction Energy- transfer Time constant T1 1/T1 measurement is a good probe for electronic states !
1/T1 in various superconductors unconventional superconductors (non BCS) NS(E) NS(E) Point nodes Line nodes N0 N0 EF EF +Δ0 EF +Δ0 EF EF +Δ0 d-wave p-wave EF Conventional type (BCS) s-wave
Summary NMR study Knight shift Cooper pair symmetry or Spin triplet Relaxation time 1/T1 Superconducting gap structure Spin singlet S=1 S=0 or BCS unconventional type Superconducting mechanism
My work Fe-pnictide superconductor “11 series” “122 series” FeSe BaFe2As2 FeSelayer “1111 series” LaFeAs(O,F) FeAslayer FeAslayer Tc max= 8 K Tc max= 38 K F.C.Hsu et al.(2008) Tc max= 55 K M. Rotter et al.(2008)
My work compare 1/T1 in1111,122,11system “La1111” “Ba122” “11” 57Fe- NMR 75As-NQR ~T5 ~T3 ~T3 unconventional superconductor
My workLa1111 system ~s(+-)wave~ S(+-)wave a=4.0208Å OPT Tc=28 K OPT : Tc =28 [K] Heavily-OVD : Tc =5 [K] 75As-NQR experiment H-OVD Tc=5 K
My workLa1111 system ~s(+-)wave~ OPT Hole electron εF ky a=4.0208Å M E Full gap Full gap kx k electron hole
My workLa1111 system ~s(+-)wave~ H-OVD electron Hole εF ky a=4.0208Å M E Full gap Full gap kx k electron hole
Future work “1111 series” LaFeAs(O,F) FeAslayer ? Fermi surface in Superconductivity Tc